论文标题

使用量子卷积神经网络进行分散的特征提取,以自动语音识别

Decentralizing Feature Extraction with Quantum Convolutional Neural Network for Automatic Speech Recognition

论文作者

Yang, Chao-Han Huck, Qi, Jun, Chen, Samuel Yen-Chi, Chen, Pin-Yu, Siniscalchi, Sabato Marco, Ma, Xiaoli, Lee, Chin-Hui

论文摘要

我们在联邦学习中提出了一种新颖的分散特征提取方法,以解决语音识别的隐私保护问题。它建立在由用于特征提取的量子电路编码器和基于端到的端到端声学模型(AM)的量子电路编码器组成的量子卷积神经网络(QCNN)。为了增强分散体系结构中的模型参数保护,首先将输入语音上将到量子计算服务器以提取MEL-SPECTROGRAM,并使用带有随机参数的量子电路算法对相应的卷积特征进行编码。然后将编码的功能向下流到本地RNN模型以进行最终识别。提议的分散框架利用量子学习进度来确保模型并避免隐私泄漏攻击。在Google语音命令数据集上进行测试,提出的QCNN编码在分散模型中获得了95.12%的竞争精度,该模型比使用具有卷积功能的集中式RNN模型的先前体系结构要好。我们还对不同的量子电路编码器架构进行了深入研究,以提供有关设计基于QCNN的特征提取器的见解。神经显着性分析表明,所提出的QCNN特征,类激活图和输入频谱图之间存在相关性。我们为将来的研究提供了实施。

We propose a novel decentralized feature extraction approach in federated learning to address privacy-preservation issues for speech recognition. It is built upon a quantum convolutional neural network (QCNN) composed of a quantum circuit encoder for feature extraction, and a recurrent neural network (RNN) based end-to-end acoustic model (AM). To enhance model parameter protection in a decentralized architecture, an input speech is first up-streamed to a quantum computing server to extract Mel-spectrogram, and the corresponding convolutional features are encoded using a quantum circuit algorithm with random parameters. The encoded features are then down-streamed to the local RNN model for the final recognition. The proposed decentralized framework takes advantage of the quantum learning progress to secure models and to avoid privacy leakage attacks. Testing on the Google Speech Commands Dataset, the proposed QCNN encoder attains a competitive accuracy of 95.12% in a decentralized model, which is better than the previous architectures using centralized RNN models with convolutional features. We also conduct an in-depth study of different quantum circuit encoder architectures to provide insights into designing QCNN-based feature extractors. Neural saliency analyses demonstrate a correlation between the proposed QCNN features, class activation maps, and input spectrograms. We provide an implementation for future studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源