论文标题

累积网络的渐近枚举和分布特性

Asymptotic Enumeration and Distributional Properties of Galled Networks

论文作者

Fuchs, Michael, Yu, Guan-Ru, Zhang, Louxin

论文摘要

我们显示了带有$ n $叶子的累积网络数量的一阶渐近学结果。这是{\ IT}大小的第一类系统发育网络,可以为其获得这种强度的渐近计数结果。此外,我们还发现了$ n $叶子随机选择的累积网络的网络的网络节点数量的限制分布。这些结果是通过对Gunawan,Rathin和Zhang(2020)的最新方法进行渐近分析来获得的,该方法是为了(准确)计数累积的网络而设计的。此外,本德和里士满(1984)的旧结果在我们的证明中也起着至关重要的作用。

We show a first-order asymptotics result for the number of galled networks with $n$ leaves. This is the first class of phylogenetic networks of {\it large} size for which an asymptotic counting result of such strength can be obtained. In addition, we also find the limiting distribution of the number of reticulation nodes of a galled networks with $n$ leaves chosen uniformly at random. These results are obtained by performing an asymptotic analysis of a recent approach of Gunawan, Rathin, and Zhang (2020) which was devised for the purpose of (exactly) counting galled networks. Moreover, an old result of Bender and Richmond (1984) plays a crucial role in our proofs, too.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源