论文标题

BayCann:通过人工神经网络元模型简化贝叶斯校准

BayCANN: Streamlining Bayesian Calibration with Artificial Neural Network Metamodeling

论文作者

Jalal, Hawre, Alarid-Escudero, Fernando

论文摘要

目的:贝叶斯校准在理论上优于标准直接搜索算法,因为它可以揭示校准参数的完整关节后验分布。但是,迄今为止,由于实用和计算负担,贝叶斯校准尚未经常用于健康决策科学。在本文中,我们建议将人工神经网络(ANN)用作解决这些局限性的一种解决方案。 方法:使用人工神经网络(BAYCANN)进行贝叶斯校准涉及(1)在模型输入和输出样本上训练ANN元模型,然后(2)随后校准训练有素的ANN Metamodel,而不是概率编程语言中的完整模型,以获得校准参数的后端关节分布。我们通过校准大肠癌的自然史模型来证明BayCann为腺瘤患病率和癌症发病率数据。此外,我们比较了BayCann与使用增量混合物重要性采样(IMIS)算法直接在模拟模型上进行贝叶斯校准的效率和准确性。 结果:在恢复“真”参数值时,BayCann通常比IMI更准确。与IMI相比,在九个校准参数中的八个中,绝对ANN偏离的比率小于一个表明BayCann比IMIS更准确。此外,与80分钟的IMIS方法相比,BayCann总共花费了大约15分钟。 结论:在我们的案例研究中,BayCann比IMIS更准确,并且更快五倍。由于BayCann不取决于仿真模型的结构,因此它可以适应各种复杂性的模型,其结构对其结构进行了较小的变化。我们在R中提供BayCann的开源实施。

Purpose: Bayesian calibration is theoretically superior to standard direct-search algorithm because it can reveal the full joint posterior distribution of the calibrated parameters. However, to date, Bayesian calibration has not been used often in health decision sciences due to practical and computational burdens. In this paper we propose to use artificial neural networks (ANN) as one solution to these limitations. Methods: Bayesian Calibration using Artificial Neural Networks (BayCANN) involves (1) training an ANN metamodel on a sample of model inputs and outputs, and (2) then calibrating the trained ANN metamodel instead of the full model in a probabilistic programming language to obtain the posterior joint distribution of the calibrated parameters. We demonstrate BayCANN by calibrating a natural history model of colorectal cancer to adenoma prevalence and cancer incidence data. In addition, we compare the efficiency and accuracy of BayCANN against performing a Bayesian calibration directly on the simulation model using an incremental mixture importance sampling (IMIS) algorithm. Results: BayCANN was generally more accurate than IMIS in recovering the "true" parameter values. The ratio of the absolute ANN deviation from the truth compared to IMIS for eight out of the nine calibrated parameters were less than one indicating that BayCANN was more accurate than IMIS. In addition, BayCANN took about 15 minutes total compared to the IMIS method which took 80 minutes. Conclusions: In our case study, BayCANN was more accurate than IMIS and was five-folds faster. Because BayCANN does not depend on the structure of the simulation model, it can be adapted to models of various levels of complexity with minor changes to its structure. We provide BayCANN's open-source implementation in R.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源