论文标题

多层异质结构中的超强光子到马格农耦合,涉及超导相干性通过铁磁层

Ultra-strong photon-to-magnon coupling in multilayered heterostructures involving superconducting coherence via ferromagnetic layers

论文作者

Golovchanskiy, I. A., Abramov, N. N., Stolyarov, V. S., Weides, M., Ryazanov, V. V., Golubov, A. A., Ustinov, A. V., Kupriyanov, M. Yu.

论文摘要

未来量子行业的关键步骤要求实现不同平台混合系统(包括光子和宏伟系统)之间的有效信息交换,这些系统可以收获不同平台的优势。在某些杂种系统中进展的主要限制因素是元素颗粒之间的根本弱耦合参数。这种限制通过实现可扩展的芯片杂种岩石系统无法实现的实现,从而阻碍了混合镁的整个领域。在这项工作中,我们提出了一种通用的灵活方法,用于实现具有前所未有的强耦合参数的片上混合宏伟的宏伟系统。该方法基于含有超导,绝缘和铁磁层的多层微生物结构,具有修改的光子相速度和木元素特征频率。从现象学上讲,增强的耦合强度由从根本降低的光子模式体积提供。在研究系统中,声子与磁通耦合的微观机制通过厚强铁磁层形成了远程超导相干性的证据。在存在磁化强化进动的情况下,超导体/铁磁体/超导体三层仪对微波磁场的相干超导筛选表现出了这种连贯性。这一发现为量子技术的微波超导旋转学提供了新的机会。

The critical step for future quantum industry demands realization of efficient information exchange between different-platform hybrid systems, including photonic and magnonic systems, that can harvest advantages of distinct platforms. The major restraining factor for the progress in certain hybrid systems is the fundamentally weak coupling parameter between the elemental particles. This restriction impedes the entire field of hybrid magnonics by making realization of scalable on-chip hybrid magnonic systems unattainable. In this work, we propose a general flexible approach for realization of on-chip hybrid magnonic systems with unprecedentedly strong coupling parameters. The approach is based on multilayered micro-structures containing superconducting, insulating and ferromagnetic layers with modified both photon phase velocities and magnon eigen-frequencies. Phenomenologically, the enhanced coupling strength is provided by the radically reduced photon mode volume. The microscopic mechanism of the phonon-to-magnon coupling in studied systems evidences formation of the long-range superconducting coherence via thick strong ferromagnetic layers. This coherence is manifested by coherent superconducting screening of microwave fields by the superconductor/ferromagnet/superconductor three-layers in presence of magnetization precession. This discovery offers new opportunities in microwave superconducting spintronics for quantum technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源