论文标题
麦克斯韦 - 迪拉克方程的归一化孤立波解
A normalized solitary wave solution of the Maxwell-Dirac equations
论文作者
论文摘要
我们证明了在(3+1)-minkowski空间中的麦克斯韦 - 迪拉克方程中存在$ l^2 $均衡的孤立波解决方案。此外,对于库仑 - 迪拉克模型,描述了在平均场限制中具有有吸引力的库仑相互作用的费米子,我们证明了(正)能量最小化的存在。
We prove the existence of a $L^2$-normalized solitary wave solution for the Maxwell-Dirac equations in (3+1)-Minkowski space. In addition, for the Coulomb-Dirac model, describing fermions with attractive Coulomb interactions in the mean-field limit, we prove the existence of the (positive) energy minimizer.