论文标题

两部分置换图的临界特性

Critical properties of bipartite permutation graphs

论文作者

Alecu, Bogdan, Lozin, Vadim, Malyshev, Dmitriy

论文摘要

两部分排列图的类都具有许多不错的重要属性。特别是,该类别在研究集团和排名宽度中至关重要,因为它是无限制和排名宽度的最小遗传图之一。它还包含许多重要的子类,这些子类对于其他参数至关重要,例如图字母或灌木深度,以及其他概念,例如算法问题的良好序或复杂性。在本文中,我们确定了各种类型的两部分置换图的关键子类。

The class of bipartite permutation graphs enjoys many nice and important properties. In particular, this class is critically important in the study of clique- and rank-width of graphs, because it is one of the minimal hereditary classes of graphs of unbounded clique- and rank-width. It also contains a number of important subclasses, which are critical with respect to other parameters, such as graph lettericity or shrub-depth, and with respect to other notions, such as well-quasi-ordering or complexity of algorithmic problems. In the present paper we identify critical subclasses of bipartite permutation graphs of various types.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源