论文标题

机器人轨迹计划,QoS受限的IRS辅助毫米波通信

Robot Trajectory Planning With QoS Constrained IRS-assisted Millimeter-Wave Communications

论文作者

Tatino, Cristian, Pappas, Nikolaos, Yuan, Di

论文摘要

本文考虑了使用智能反射表面(IRS)辅助毫米波(MM-WAVE)通信的无线连接机器人进行轨迹的联合优化。目的是最大程度地减少按时间和沟通质量(QOS)约束的运动能耗。对于行业4.0来说,这是一个基本问题,机器人可能必须最大程度地提高电池自主权和沟通效率。在这种情况下,IRS和MM波可以大大提高无线通信的频谱效率,从而为新的工业应用提供高数据速率和可靠性。我们为优化问题提供了一种解决方案,该优化问题利用了MM-Wave通道特性来解除光束形成和轨迹优化。然后,通过连续的凸优化(SCO)算法解决后者。该算法考虑了障碍的位置和无线电图,并提供了避免碰撞并满足QoS约束的解决方案。此外,我们证明该算法会收敛到满足Karush-Kuhn-Tucker(KKT)条件的溶液。

This paper considers the joint optimization of trajectory and beamforming of a wirelessly connected robot using intelligent reflective surface (IRS)-assisted millimeter-wave (mm-wave) communications. The goal is to minimize the motion energy consumption subject to time and communication quality of service (QoS) constraints. This is a fundamental problem for industry 4.0, where robots may have to maximize their battery autonomy and communication efficiency. In such scenarios, IRSs and mm-waves can dramatically increase the spectrum efficiency of wireless communications providing high data rates and reliability for new industrial applications. We present a solution to the optimization problem that exploits mm-wave channel characteristics to decouple beamforming and trajectory optimizations. Then, the latter is solved by a successive-convex optimization (SCO) algorithm. The algorithm takes into account the obstacles' positions and a radio map and provides solutions that avoid collisions and satisfy the QoS constraint. Moreover, we prove that the algorithm converges to a solution satisfying the Karush-Kuhn-Tucker (KKT) conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源