论文标题

具有电势的非线性Schrödinger系统的最小化序列的紧凑性

The compactness of minimizing sequences for a nonlinear Schrödinger system with potentials

论文作者

Ikoma, Norihisa, Miyamoto, Yasuhito

论文摘要

在本文中,我们考虑以下最小化问题,并具有两个约束: \ [ \ inf \ left \ {e(u)| u =(u_1,u_2),\ \ | u_1 \ | _ {l^2}^2 =α_1,\ \ | u_2 \ | _ {l^2}^2 =α_2\ right \}, \] 其中$α_1,α_2> 0 $和$ e(u)$由 \ [ e(u):= \ int _ {\ mathbf {r}^n} \ left \ {\ frac {1} {2} \ sum_ {i = 1}^2 \ left(| \ nabla u_1 |^2+v_i(x)| u_i |^2 \ right) - \ sum_ {i = 1}^2 \ frac {μ_i} {μ_i} {2p_i+2} - \fracβ{p_3+1} | u_1 |^{p_3+1} | u_2 |^{p_3+1} \ right \} \ right \} \ mathrm {d} x。 \] 这里$ n \ geq 1 $,$μ_1,μ_2,β> 0 $和$ v_i(x)$ $(i = 1,2)$具有功能。 对于$ v_i(x)$,我们考虑两种情况:(i)$ v_1 $和$ v_2 $都有限制,(ii)$ v_1 $和$ v_2 $之一。根据$ v_i $和$ p_j $的某些假设,我们讨论了任何最小化序列的紧凑性。

In this paper, we consider the following minimizing problem with two constraints: \[ \inf \left\{ E(u) | u=(u_1,u_2), \ \| u_1 \|_{L^2}^2 = α_1, \ \| u_2 \|_{L^2}^2 = α_2 \right\}, \] where $α_1,α_2 > 0$ and $E(u)$ is defined by \[ E(u) := \int_{\mathbf{R}^N} \left\{\frac{1}{2} \sum_{i=1}^2 \left( |\nabla u_1|^2 + V_i (x) |u_i|^2 \right) - \sum_{i=1}^2 \frac{μ_i}{2p_i+2} |u_i|^{2p_i+2} - \fracβ{p_3+1} |u_1|^{p_3+1} |u_2|^{p_3+1} \right\} \mathrm{d} x. \] Here $N \geq 1$, $ μ_1,μ_2,β> 0$ and $V_i(x)$ $(i=1,2)$ are given functions. For $V_i(x)$, we consider two cases: (i) both of $V_1$ and $V_2$ are bounded, (ii) one of $V_1$ and $V_2$ is bounded. Under some assumptions on $V_i$ and $p_j$, we discuss the compactness of any minimizing sequence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源