论文标题

在有限温度下的玻色果混合物中的超纤维自结合量子液滴

Ultradilute self-bound quantum droplets in Bose-Bose mixtures at finite temperature

论文作者

Wang, Jia, Liu, Xia-Ji, Hu, Hui

论文摘要

从理论上讲,我们研究了在平坦的bose混合物中实现的平坦空间中的自束超玻色液滴的有限温度结构和集体激发,并在平均场倒塌的边缘具有吸引人的种间相互作用。由于液滴的形成准确地依赖于Lee-Yang-Yang量子波动提供的排斥力,这可以通过热波动很容易补偿,因此我们发现Bose液滴的密度分布和集体激发光谱具有显着的温度效应。确定有限温度相图作为粒子数量的函数。我们表明,随着温度的升高,液滴到气体转变的临界数量会急剧增加。朝着无限大的液滴的热阈值温度达到稳定的稳定,我们发现激发频谱中的激发,自我蒸发区域在早期通过彼得罗夫(Petrov)使用零温度理论,缩小并最终消失了。所有集体激发,包括表面模式和压缩体积模式,在液滴到气体过渡时都会变得软化。由于在低温下缺乏有效的温度,这项工作中自结合的玻色液滴的预测温度影响可能很难在实验中进行测量。但是,这些影响可能已经存在于当前的冷原子实验中。

We theoretically investigate the finite-temperature structure and collective excitations of a self-bound ultradilute Bose droplet in a flat space realized in a binary Bose mixture with attractive inter-species interactions on the verge of mean-field collapse. As the droplet formation relies critically on the repulsive force provided by Lee-Huang-Yang quantum fluctuations, which can be easily compensated by thermal fluctuations, we find a significant temperature effect in the density distribution and collective excitation spectrum of the Bose droplet. A finite-temperature phase diagram as a function of the number of particles is determined. We show that the critical number of particles at the droplet-to-gas transition increases dramatically with increasing temperature. Towards the bulk threshold temperature for thermally destabilizing an infinitely large droplet, we find that the excitation-forbidden, self-evaporation region in the excitation spectrum, predicted earlier by Petrov using a zero-temperature theory, shrinks and eventually disappears. All the collective excitations, including both surface modes and compressional bulk modes, become softened at the droplet-to-gas transition. The predicted temperature effects of a self-bound Bose droplet in this work could be difficult to measure experimentally due to the lack of efficient thermometry at low temperatures. However, these effects may already present in the current cold-atom experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源