论文标题

可移动障碍之间的联合路径和推动计划

Joint Path and Push Planning Among Movable Obstacles

论文作者

Emeli, Victor, Cosgun, Akansel

论文摘要

本文探讨了可移动障碍(NAMO)问题之间的导航,并提出了联合路径和推动计划:鉴于起始和目标位置,应采取哪个路径以及朝哪个方向推动障碍。我们提出了一种计划算法,用于选择一条路径和要推的障碍,其中采用了迅速探索的随机树(RRT)启发式启发式,以计算最小的碰撞路径。当有必要使用推力将障碍物滑出障碍物时,计划人员通过动态物理模拟利用平均值分析来确定线性推动的顺序以清除必要的空间。模拟实验表明,与直线推计划器(37%)和RRT无需推动(18%),我们的方法以更高的杂波百分比(高达49%)的方式找到解决方案。

This paper explores the Navigation Among Movable Obstacles (NAMO) problem and proposes joint path and push planning: which path to take and in what direction the obstacles should be pushed at, given a start and goal position. We present a planning algorithm for selecting a path and the obstacles to be pushed, where a Rapidly-exploring Random Tree (RRT)-based heuristic is employed to calculate a minimal collision path. When it is necessary to apply a pushing force to slide an obstacle out of the way, the planners leverage means-end analysis through a dynamic physics simulation to determine the sequence of linear pushes to clear the necessary space. Simulation experiments show that our approach finds solutions in higher clutter percentages (up to 49%) compared to the straight-line push planner (37%) and RRT without pushing (18%).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源