论文标题
具有专家增强知识的结构性因果模型,以估计氧疗法对ICU死亡率的影响
Structural Causal Model with Expert Augmented Knowledge to Estimate the Effect of Oxygen Therapy on Mortality in the ICU
论文作者
论文摘要
在结构性因果模型的理论中,因果推理技术的最新进展提供了框架,以识别观察数据中的因果关系效应的框架。但是,没有进行此类研究来以临床例子来证明这一概念。我们提出了一个完整的框架,以通过增强模型开发阶段的专家知识和实用的临床应用来估算观察数据的因果效应。我们的临床应用需要及时,重要的研究问题,即氧疗法干预对重症监护病房(ICU)的影响;该项目的结果在各种疾病状况中很有用,包括ICU中严重的急性呼吸综合症冠状病毒-2(SARS-COV-2)患者。我们使用了MIMIC III数据库中的数据,该数据库是机器学习社区中的标准数据库,其中包含来自马萨诸塞州波士顿市ICU的58,976次入院,用于估计氧疗法对道德的影响。我们还从模型中确定了对氧疗法的协变量特异性作用,以进行更个性化的干预。
Recent advances in causal inference techniques, more specifically, in the theory of structural causal models, provide the framework for identification of causal effects from observational data in the cases where the causal graph is identifiable, i.e., the data generating mechanism can be recovered from the joint distribution. However, no such studies have been done to demonstrate this concept with a clinical example. We present a complete framework to estimate the causal effect from observational data by augmenting expert knowledge in the model development phase and with a practical clinical application. Our clinical application entails a timely and important research question, i.e., the effect of oxygen therapy intervention in the intensive care unit (ICU); the result of this project is useful in a variety of disease conditions, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) patients in the ICU. We used data from the MIMIC III database, a standard database in the machine learning community that contains 58,976 admissions from an ICU in Boston, MA, for estimating the oxygen therapy effect on morality. We also identified the covariate-specific effect to oxygen therapy from the model for more personalized intervention.