论文标题

复杂的约瑟夫森量子电路的有效数值模拟

Efficient numerical simulation of complex Josephson quantum circuits

论文作者

Kerman, Andrew J.

论文摘要

在建立的超导电路量化方法的基础上,我们提出了一个新的理论框架,用于近似约瑟夫森量子电路的数值模拟。基于此框架的仿真可访问一定程度的复杂性和电路尺寸,迄今无法访问定量分析,包括从根本上讲是新型的超导量子设备。通过对以前的方法进行了两种改进,可以实现这种能力:对于规范电路模式和物理基础状态,首先是进行物理动机的选择,这些选择允许高效矩阵表示;其次,一种迭代方法,其中子系统分别对角系统进行对角线,然后在每次迭代的尺寸尺度上耦合在一起,从而使在极大的希尔伯特空间中的汉密尔顿人对角度进行对角线化,可以在更小的空间中使用一系列对角色进行近似。

Building on the established methods for superconducting circuit quantization, we present a new theoretical framework for approximate numerical simulation of Josephson quantum circuits. Simulations based on this framework provide access to a degree of complexity and circuit size heretofore inaccessible to quantitative analysis, including fundamentally new kinds of superconducting quantum devices. This capability is made possible by two improvements over previous methods: first, physically-motivated choices for the canonical circuit modes and physical basis states which allow a highly-efficient matrix representation; and second, an iterative method in which subsystems are diagonalized separately and then coupled together, at increasing size scales with each iteration, allowing diagonalization of Hamiltonians in extremely large Hilbert spaces to be approximated using a sequence of diagonalizations in much smaller spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源