论文标题
对轨迹的非平衡物理学的温和介绍:理论,算法和生物分子应用
A gentle introduction to the non-equilibrium physics of trajectories: Theory, algorithms, and biomolecular applications
论文作者
论文摘要
尽管非平衡统计力学在现代物理和相关领域的重要性很重要,但该主题通常是从本科和核心研究生课程中省略的。但是,可以根据严格的轨迹图片的最低形式主义来理解非平衡物理学的关键方面。基本对象是轨迹的集合,这是一组独立的时间变化系统,可以轻松地可视化或模拟(例如蛋白质折叠,例如),并且可以类似于静态系统配置的集合,可以对其进行严格的分析。轨迹图为理解复杂系统中的“机制”以及基本约束复杂过程的明显可逆性提供了直接的基础。轨迹使混凝土成为扩散和fokker-Planck部分微分方程的基础物理。最后但并非最不重要的一点是,轨迹集合基于一些最重要的算法,这些算法在蛋白质构象和结合过程的生物分子研究方面取得了重大进展。
Despite the importance of non-equilibrium statistical mechanics in modern physics and related fields, the topic is often omitted from undergraduate and core-graduate curricula. Key aspects of non-equilibrium physics, however, can be understood with a minimum of formalism based on a rigorous trajectory picture. The fundamental object is the ensemble of trajectories, a set of independent time-evolving systems that easily can be visualized or simulated (for protein folding, e.g.), and which can be analyzed rigorously in analogy to an ensemble of static system configurations. The trajectory picture provides a straightforward basis for understanding first-passage times, "mechanisms" in complex systems, and fundamental constraints the apparent reversibility of complex processes. Trajectories make concrete the physics underlying the diffusion and Fokker-Planck partial differential equations. Last but not least, trajectory ensembles underpin some of the most important algorithms which have provided significant advances in biomolecular studies of protein conformational and binding processes.