论文标题
内态环通过最小的形态
Endomorphism rings via minimal morphisms
论文作者
论文摘要
我们证明,如果$ u:k \ rightarrow m $是左键的最小扩展,那么两个子环之间存在同构,$ \ textrm {end} _r^m(k)$和$ \ textrm {end} _r {end} _r _r^k(m) $ \ textrm {end} _r(m)$,他们的jacobson激进分子。这种同构用于在某些情况下从$ m $的内态循环中推断出$ k $的内态戒指的属性,例如$ k $在$ m,$ $ m,$ $ m,$ k $下不变时,$ k $在$ m $ m $ m $ $ m $的情况下是不变的。
We prove that if $u:K \rightarrow M$ is a left minimal extension, then there exists an isomorphism between two subrings, $\textrm{End}_R^M(K)$ and $\textrm{End}_R^K(M)$ of $\textrm{End}_R(K)$ and $\textrm{End}_R(M)$ respectively, modulo their Jacobson radicals. This isomorphism is used to deduce properties of the endomorphism ring of $K$ from those of the endomorphism ring of $M$ in certain situations such us when $K$ is invariant under endomorphisms of $M,$ or when $K$ is invariant under automorphisms of $M$.