论文标题

海报:基准为财务数据提要系统

Poster: Benchmarking Financial Data Feed Systems

论文作者

Coenen, Manuel, Wagner, Christoph, Echler, Alexander, Frischbier, Sebastian

论文摘要

投资行业的数据驱动解决方案要求基于事件的后端系统以低延迟,高吞吐量和保证的交付模式处理大批量财务数据源。 在VWD,我们使用定制的平台使用定制的平台来处理500多个数据源的180亿个传入事件通知,每天3000万个符号,每秒1千万个通知的峰值通知。 目前,我们评估了现代的开源事件处理平台,例如Kafka,Nats,Redis,Flink或Storm,以便在我们的股票工厂中使用,以减少用于交叉切割问题的维护工作,并利用混合部署模型。为了可比性和可重复性,我们用我们从真实数据提要中得出的标准化工作量进行基准测试。 我们已经在处理,记录和报告功能中增强了现有的轻巧开源基准测试工具,以应对我们的工作量。最终的工具扳手可以模拟工作负载或重播音量和动态的快照,例如我们在股票工厂中处理的快照。我们将工具作为开源。 作为正在进行的工作的一部分,我们介绍了(a)我们的工作量和对金融饲料处理的候选平台的要求; (b)工具扳手的当前状态。

Data-driven solutions for the investment industry require event-based backend systems to process high-volume financial data feeds with low latency, high throughput, and guaranteed delivery modes. At vwd we process an average of 18 billion incoming event notifications from 500+ data sources for 30 million symbols per day and peak rates of 1+ million notifications per second using custom-built platforms that keep audit logs of every event. We currently assess modern open source event-processing platforms such as Kafka, NATS, Redis, Flink or Storm for the use in our ticker plant to reduce the maintenance effort for cross-cutting concerns and leverage hybrid deployment models. For comparability and repeatability we benchmark candidates with a standardized workload we derived from our real data feeds. We have enhanced an existing light-weight open source benchmarking tool in its processing, logging, and reporting capabilities to cope with our workloads. The resulting tool wrench can simulate workloads or replay snapshots in volume and dynamics like those we process in our ticker plant. We provide the tool as open source. As part of ongoing work we contribute details on (a) our workload and requirements for benchmarking candidate platforms for financial feed processing; (b) the current state of the tool wrench.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源