论文标题
在无限数量的颗粒的极限处,被困的Bose-Einstein冷凝物的通用驱动混合物和多个玻璃浮子状态的特性的通用驱动混合物的可解决模型
Solvable model of a generic driven mixture of trapped Bose-Einstein condensates and properties of a many-boson Floquet state at the limit of an infinite number of particles
论文作者
论文摘要
玻色丝凝结物的定期驱动的捕获混合物的可解决模型,由$ n_1 $相互作用的块质量$ m_1 $由振幅$ f_ {l,1} $和$ n_2 $的bos $ m_1和$ n_2 $相互作用的质量$ m_2 $驱动的iS prients a amplitude asplitude f _ $ f_ $ f_ $ f_;该模型将混合物的谐波交流模型推广到时间依赖性域。所得的许多粒子地面浮子波函数和ic酸,以及时间依赖性的密度和降低的密度矩阵,在有限系统的多体和平均水平上进行了明确规定,并在无限粒子数量的极限上进行了分析。我们证明,每个粒子的时间依赖性密度是通过其各自的平均场数量以无限数量的颗粒数给出的,并且每个驱动混合物的时代依赖性降低的一颗粒子和两个粒子密度矩阵为$ 100 \%\%$浓缩。有趣的是,除非两个Bose-Einstein冷凝物的相对质量中心坐标不会被驱动力$ f_ {l,1} $和$ f_ {l,2} $激活,否则每个粒子的否定剂{\ n}与平均场值不一致。作为一种应用,我们通过相互作用的玻色杂质和所得的旋转模式来研究角动量及其波动的印迹及其波动。尽管在无限数量的粒子极限上重合多体和平均场溶液的角度摩托算子的每个粒子的预期值,但各自的波动可能会有很大差异。根据翻译和增强和粒子之间的相互作用,根据角度摩肌操作员的转化特性分析了结果。简要讨论含义。
A solvable model of a periodically-driven trapped mixture of Bose-Einstein condensates, consisting of $N_1$ interacting bosons of mass $m_1$ driven by a force of amplitude $f_{L,1}$ and $N_2$ interacting bosons of mass $m_2$ driven by a force of amplitude $f_{L,2}$, is presented. The model generalizes the harmonic-interaction model for mixtures to the time-dependent domain. The resulting many-particle ground Floquet wavefunction and quasienergy, as well as the time-dependent densities and reduced density matrices, are prescribed explicitly and analyzed at the many-body and mean-field levels of theory for finite systems and at the limit of an infinite number of particles. We prove that the time-dependent densities per particle are given at the limit of an infinite number of particles by their respective mean-field quantities, and that the time-dependent reduced one-particle and two-particle density matrices per particle of the driven mixture are $100\%$ condensed. Interestingly, the quasienergy per particle {\it does not} coincide with the mean-field value at this limit, unless the relative center-of-mass coordinate of the two Bose-Einstein condensates is not activated by the driving forces $f_{L,1}$ and $f_{L,2}$. As an application, we investigate the imprinting of angular momentum and its fluctuations when steering a Bose-Einstein condensate by an interacting bosonic impurity, and the resulting modes of rotations. Whereas the expectation values per particle of the angular-momentum operator for the many-body and mean-field solutions coincide at the limit of an infinite number of particles, the respective fluctuations can differ substantially. The results are analyzed in terms of the transformation properties of the angular-momentum operator under translations and boosts and the interactions between the particles. Implications are briefly discussed.