论文标题
医疗应用的模式匹配单元
Pattern-matching Unit for Medical Applications
论文作者
论文摘要
我们探讨了高能物理(HEP)在高级医学数据分析中开发的概念的应用。 我们的研究案例是具有高社会影响的问题:临床上可行的磁共振指纹(MRF)。 MRF是一种新的,定量的成像技术,它用单个可再现的测量值代替了多个定性磁共振成像(MRI)检查,以提高灵敏度和效率。快速获取之后是模式匹配(PM)任务,其中信号响应与模拟,物理上可行的响应字典的条目匹配,同时产生多个组织参数。通过具有所有字典条目的标量产品比较体积中的每个像素信号响应,以选择最佳的测量繁殖。 MRF受到PM处理时间的限制,PM处理时间与字典维度呈指数缩放,即与要重建的组织参数的数量。我们为HEP开发了一个功能强大,紧凑,嵌入式系统,该系统针对极快的PM进行了优化。该系统在HEP实验中执行实时跟踪,以进行在线活动选择,从而利用最大的并行性和管道。轨道重建以两个步骤执行。关联内存(AM)ASIC首先通过低分辨率识别赛道候选者来实现PM算法。第二步已实现为FPGA(字段可编程门数组),它完善了AM输出以完全分辨率找到轨道参数。 我们建议使用该系统执行MRF,以实现临床合理的重建时间。本文提出了用于医学成像的HEP系统的改编,并显示了一些初步结果。
We explore the application of concepts developed in High Energy Physics (HEP) for advanced medical data analysis. Our study case is a problem with high social impact: clinically-feasible Magnetic Resonance Fingerprinting (MRF). MRF is a new, quantitative, imaging technique that replaces multiple qualitative Magnetic Resonance Imaging (MRI) exams with a single, reproducible measurement for increased sensitivity and efficiency. A fast acquisition is followed by a pattern matching (PM) task, where signal responses are matched to entries from a dictionary of simulated, physically-feasible responses, yielding multiple tissue parameters simultaneously. Each pixel signal response in the volume is compared through scalar products with all dictionary entries to choose the best measurement reproduction. MRF is limited by the PM processing time, which scales exponentially with the dictionary dimensionality, i.e. with the number of tissue parameters to be reconstructed. We developed for HEP a powerful, compact, embedded system, optimized for extremely fast PM. This system executes real-time tracking for online event selection in the HEP experiments, exploiting maximum parallelism and pipelining. Track reconstruction is executed in two steps. The Associative Memory (AM) ASIC first implements a PM algorithm by recognizing track candidates at low resolution. The second step, which is implemented into FPGAs (Field Programmable Gate Arrays), refines the AM output finding the track parameters at full resolution. We propose to use this system to perform MRF, to achieve clinically reasonable reconstruction time. This paper proposes an adaptation of the HEP system for medical imaging and shows some preliminary results.