论文标题
在跨域的参数空间中结合域特异性的元学习者
Combining Domain-Specific Meta-Learners in the Parameter Space for Cross-Domain Few-Shot Classification
论文作者
论文摘要
几次分类的目的是学习一个只能使用几个培训示例对新颖类进行分类的模型。尽管现有的元学习算法在解决了几个射击分类问题方面表现出了令人鼓舞的结果,但仍然存在一个重要的挑战:如何在多个可见的域上进行元学习时概括到看不见的域?在本文中,我们提出了一种基于优化的元学习方法,称为组合域特异性元学习者(COSML),该方法解决了跨域几乎没有射击分类问题。 COSML首先训练一组元学习者,一个用于每个培训领域的元学习者,以了解每个域特有的先验知识(即元参数)。然后,通过采取其元参数的加权平均值,将特定于域特异性的元学习器组合在\ emph {参数空间}中,该平均值将其用作任务网络的初始化参数,该参数迅速适应了在未见域中的新颖的少数几声分类任务。我们的实验表明,COSML的表现胜过一系列最新方法,并且具有强大的跨域泛化能力。
The goal of few-shot classification is to learn a model that can classify novel classes using only a few training examples. Despite the promising results shown by existing meta-learning algorithms in solving the few-shot classification problem, there still remains an important challenge: how to generalize to unseen domains while meta-learning on multiple seen domains? In this paper, we propose an optimization-based meta-learning method, called Combining Domain-Specific Meta-Learners (CosML), that addresses the cross-domain few-shot classification problem. CosML first trains a set of meta-learners, one for each training domain, to learn prior knowledge (i.e., meta-parameters) specific to each domain. The domain-specific meta-learners are then combined in the \emph{parameter space}, by taking a weighted average of their meta-parameters, which is used as the initialization parameters of a task network that is quickly adapted to novel few-shot classification tasks in an unseen domain. Our experiments show that CosML outperforms a range of state-of-the-art methods and achieves strong cross-domain generalization ability.