论文标题
通过Pauli方程,将电荷 - 二元系统映射到依赖位置的有效质量背景
Mapping the charge-dyon system into the position-dependent effective mass background via Pauli equation
论文作者
论文摘要
这项工作旨在重现由带电自旋组成的量子系统-1/2 $ fermion与Dyon与具有相反电荷的Dyon相互作用(电荷-DYON系统),并利用了通过PDM Free Pauli方程的非偏见性态度中的位置依赖性有效质量(PDM)背景。为了调查是否有一个具有相同物理(类似模型)的PDM量子系统,即电荷型系统(目标系统),我们求助于PDM Free Pauli方程本身。我们继续将目标系统的确切双旋转器替换为该方程式,从而获得了质量分布$ M $的非线性部分偏微分方程的未耦合系统。我们能够以$ m $的数值解决它们,即仅考虑径向依赖性,即$ m = m(r)$,修复$θ_0$,并考虑满足某个条件的特定值$μ$和$ m $。我们以图形方式介绍解决方案,并从它们中确定各自的有效电位,实际上代表了我们的类似模型。我们从最小值$ j =μ-1/2 $开始研究特征值的映射。
This work aims to reproduce a quantum system composed of a charged spin - $1/2$ fermion interacting with a dyon with an opposite electrical charge (charge-dyon system), utilizing a position-dependent effective mass (PDM) background in the non-relativistic regime via the PDM free Pauli equation. To investigate whether there is a PDM quantum system with the same physics (analogous model) that a charge-dyon system (target system), we resort to the PDM free Pauli equation itself. We proceed with replacing the exact bi-spinor of the target system into this equation, obtaining an uncoupled system of non-linear partial differential equations for the mass distribution $M$. We were able to solve them numerically for $M$ considering a radial dependence only, i.e., $M=M(r)$, fixing $θ_0$, and considering specific values of $μ$ and $m$ satisfying a certain condition. We present the solutions graphically, and from them, we determine the respective effective potentials, which actually represent our analogous models. We study the mapping for eigenvalues starting from the minimal value $j = μ- 1/2$.