论文标题
分层双向自我注意网络,用于纸质审查评级建议
Hierarchical Bi-Directional Self-Attention Networks for Paper Review Rating Recommendation
论文作者
论文摘要
评论评论评论评论是一项快速增长的技术,具有自然语言处理中的广泛应用。但是,大多数现有方法要么使用手工制作的功能,要么使用简单的文本语料库作为审查评级预测的输入来学习功能,而忽略了数据之间的层次结构。在本文中,我们提出了一个分层双向自我注意网络框架(HABNET),用于纸质审核评级预测和建议,这可以作为学术论文审查过程的有效决策工具。具体而言,我们利用本文的层次结构来评论三个级别的编码器:句子编码器(第一级),内部回顾器编码器(第二级)和互浏览中的编码器(第三级)。每个编码器首先得出每个级别的上下文表示,然后生成更高级别的表示,在学习过程之后,我们能够识别有用的预测指标,以做出最终的接受决策,并帮助发现数值审查评级和审阅者传达的文本情感之间的不一致性。此外,我们介绍了两个新的指标,以评估数据不平衡情况下的模型。与最新方法相比,对公开可用数据集(PEERREAD)和我们自己收集的数据集(OpenReview)进行了广泛的实验,证明了所提出的方法的优势。
Review rating prediction of text reviews is a rapidly growing technology with a wide range of applications in natural language processing. However, most existing methods either use hand-crafted features or learn features using deep learning with simple text corpus as input for review rating prediction, ignoring the hierarchies among data. In this paper, we propose a Hierarchical bi-directional self-attention Network framework (HabNet) for paper review rating prediction and recommendation, which can serve as an effective decision-making tool for the academic paper review process. Specifically, we leverage the hierarchical structure of the paper reviews with three levels of encoders: sentence encoder (level one), intra-review encoder (level two) and inter-review encoder (level three). Each encoder first derives contextual representation of each level, then generates a higher-level representation, and after the learning process, we are able to identify useful predictors to make the final acceptance decision, as well as to help discover the inconsistency between numerical review ratings and text sentiment conveyed by reviewers. Furthermore, we introduce two new metrics to evaluate models in data imbalance situations. Extensive experiments on a publicly available dataset (PeerRead) and our own collected dataset (OpenReview) demonstrate the superiority of the proposed approach compared with state-of-the-art methods.