论文标题
在线图分区的紧密界限
Tight Bounds for Online Graph Partitioning
论文作者
论文摘要
我们考虑以下在线优化问题。给我们一个图形$ g $,并将图的每个顶点分配给$ \ ell $服务器之一,该服务器具有容量$ k $,我们假设该图具有$ \ ell \ ell \ cdot k $ Vertices。最初,$ g $不包含任何边缘,然后$ g $的边缘逐一显示。目标是设计一种在线算法$ \ operatorname {Onl} $,该$始终将由同一服务器上显示的边缘引起的连接组件放置,并且永远不会超过服务器容量,而不是$ \ VAREPSILON K $,用于常量$ \ varepsilon> 0 $。每当$ \ operatorname {onl} $学习新的边缘时,允许算法将顶点从一台服务器移动到另一台服务器。它的目标是最大程度地减少顶点移动的数量。更具体地说,$ \ operatorname {Onl} $应最小化竞争比率:与最佳的离线算法$ \ operatatorName {optatorname {opt} $相比,总成本$ \ operatatorName {onl} $引起。 我们的主要贡献是一种多项式的随机算法,这是渐近最佳的:我们在其竞争比中得出了$ O(\ log \ ell + \ log k)$的上限,并表明没有随机在线算法可以达到竞争比的竞争比率低于$ phom $ phog \ ell + el + log + log k)$。我们还通过得出$θ(\ ell \ lg k)$的竞争比率来解决确定性在线算法实现的竞争比率的公开问题;为此,我们提出了改进的下限以及确定性的多项式在线算法。 我们的算法依赖于一种新型技术,该技术将有效的整数编程与一种保持ILP解决方案的组合方法结合在一起。我们认为,这项技术具有独立的兴趣,并将在将来找到进一步的应用。
We consider the following online optimization problem. We are given a graph $G$ and each vertex of the graph is assigned to one of $\ell$ servers, where servers have capacity $k$ and we assume that the graph has $\ell \cdot k$ vertices. Initially, $G$ does not contain any edges and then the edges of $G$ are revealed one-by-one. The goal is to design an online algorithm $\operatorname{ONL}$, which always places the connected components induced by the revealed edges on the same server and never exceeds the server capacities by more than $\varepsilon k$ for constant $\varepsilon>0$. Whenever $\operatorname{ONL}$ learns about a new edge, the algorithm is allowed to move vertices from one server to another. Its objective is to minimize the number of vertex moves. More specifically, $\operatorname{ONL}$ should minimize the competitive ratio: the total cost $\operatorname{ONL}$ incurs compared to an optimal offline algorithm $\operatorname{OPT}$. Our main contribution is a polynomial-time randomized algorithm, that is asymptotically optimal: we derive an upper bound of $O(\log \ell + \log k)$ on its competitive ratio and show that no randomized online algorithm can achieve a competitive ratio of less than $Ω(\log \ell + \log k)$. We also settle the open problem of the achievable competitive ratio by deterministic online algorithms, by deriving a competitive ratio of $Θ(\ell \lg k)$; to this end, we present an improved lower bound as well as a deterministic polynomial-time online algorithm. Our algorithms rely on a novel technique which combines efficient integer programming with a combinatorial approach for maintaining ILP solutions. We believe this technique is of independent interest and will find further applications in the future.