论文标题
cr $ \ textit {m} \ textit {n} $ equiatomic quiatomic quaternary heusler Alloys中的完全补偿的铁磁旋转过滤材料
Fully-Compensated Ferrimagnetic Spin Filter Materials within the Cr$\textit{M}\textit{N}$Al Equiatomic Quaternary Heusler Alloys
论文作者
论文摘要
xx'yz等高季素合金(EQHA)包含cr,al和Select IVB元素($ \ textit {m} $ = ti,zr,hf)和vb组元素($ \ \ \ textit {n} $ = v,nb,ta)的效率均已启用,以确定效率的功能。每种合金都根据其自旋依赖性电子结构作为半米,无间隙的半导体或自旋滤波器材料进行分类。我们预测几种具有较小的电子间隙和较大的交换分裂的全新功能齐全的铁磁自旋滤清器材料,可以具有较小的电阻的稳健自旋极化。 CRVZRAL,CRVHFAL,CRTINBAL和CRTITAAL被确定为特别健壮的旋转过滤器候选物,而交换分配为$ \ sim 0.20 $ ev。尤其是,crtinbal和crtitaal的带差极小为$ \ sim 0.10 $ ev。此外,在这些化合物中,在可能采用的3种可能的原子布置中的2个中,可以保持自旋不对称的电子带隙,从而使电子特性不太容易受到随机位点障碍的影响。另外,将静水应力应用于研究化合物的一个子集,以确定各种电子相的稳定性和可调性。具体而言,我们发现化合物的Cralv $ \ textit {M} $亚家族对静水压力非常敏感,从而在所有旋转依赖性电子相之间产生过渡。
XX'YZ equiatomic quaternary Heusler alloys (EQHA's) containing Cr, Al, and select Group IVB elements ($\textit{M}$ = Ti, Zr, Hf) and Group VB elements ($\textit{N}$ = V, Nb, Ta) were studied using state-of-the-art density functional theory to determine their effectiveness in spintronic applications. Each alloy is classified based on their spin-dependent electronic structure as a half-metal, a spin gapless semiconductor, or a spin filter material. We predict several new fully-compensated ferrimagnetic spin filter materials with small electronic gaps and large exchange splitting allowing for robust spin polarization with small resistance. CrVZrAl, CrVHfAl, CrTiNbAl, and CrTiTaAl are identified as particularly robust spin filter candidates with an exchange splitting of $\sim 0.20$ eV. In particular, CrTiNbAl and CrTiTaAl have exceptionally small band gaps of $\sim 0.10$ eV. Moreover, in these compounds, a spin asymmetric electronic band gap is maintained in 2 of 3 possible atomic arrangements they can take, making the electronic properties less susceptible to random site disorder. In addition, hydrostatic stress is applied to a subset of the studied compounds in order to determine the stability and tunability of the various electronic phases. Specifically, we find the CrAlV$\textit{M}$ subfamily of compounds to be exceptionally sensitive to hydrostatic stress, yielding transitions between all spin-dependent electronic phases.