论文标题
您(不)属于这里:通过上下文学习检测DPI逃避攻击
You Do (Not) Belong Here: Detecting DPI Evasion Attacks with Context Learning
论文作者
论文摘要
随着深度数据包检查(DPI)中间箱变得越来越流行,出现了一系列对抗攻击,目的是逃避此类中间箱。这些攻击中的许多攻击利用了Middlebox网络协议实现之间的差异,以及在最终主机上实现的更严格/完整的版本。这些逃避攻击在很大程度上涉及对数据包的微妙操纵,以在DPI和End主机上引起不同的行为,以掩护可检测到的恶意网络流量。随着最近的自动化发现,手动策划检测这些操作的规则变得极为挑战。在这项工作中,我们提出了拍手,这是第一个完全自动化的,无监督的ML解决方案,以准确检测和定位DPI逃避攻击。通过学习我们所谓的数据包上下文,该上下文本质上捕获了连接中两种不同数据包的相互关系; (2)每个数据包中的不同标头字段,仅从良性的交通轨迹中,拍手可以检测并查明违反良性数据包上下文的数据包(这是专门为逃避目的而设计的)。我们对73次最先进的DPI逃避攻击的评估表明,拍手在接收器操作特征曲线(AUC-ROC)下达到0.963的面积,在检测中仅相等的错误率(EER)为0.061,而本地化的准确度为94.6%。这些结果表明,拍手可能是挫败DPI逃避攻击的有前途的工具。
As Deep Packet Inspection (DPI) middleboxes become increasingly popular, a spectrum of adversarial attacks have emerged with the goal of evading such middleboxes. Many of these attacks exploit discrepancies between the middlebox network protocol implementations, and the more rigorous/complete versions implemented at end hosts. These evasion attacks largely involve subtle manipulations of packets to cause different behaviours at DPI and end hosts, to cloak malicious network traffic that is otherwise detectable. With recent automated discovery, it has become prohibitively challenging to manually curate rules for detecting these manipulations. In this work, we propose CLAP, the first fully-automated, unsupervised ML solution to accurately detect and localize DPI evasion attacks. By learning what we call the packet context, which essentially captures inter-relationships across both (1) different packets in a connection; and (2) different header fields within each packet, from benign traffic traces only, CLAP can detect and pinpoint packets that violate the benign packet contexts (which are the ones that are specially crafted for evasion purposes). Our evaluations with 73 state-of-the-art DPI evasion attacks show that CLAP achieves an Area Under the Receiver Operating Characteristic Curve (AUC-ROC) of 0.963, an Equal Error Rate (EER) of only 0.061 in detection, and an accuracy of 94.6% in localization. These results suggest that CLAP can be a promising tool for thwarting DPI evasion attacks.