论文标题

非电向布朗桥的边缘通用性

Edge Universality for Nonintersecting Brownian Bridges

论文作者

Huang, Jiaoyang

论文摘要

在本文中,我们研究了非质量的布朗桥的极端颗粒的波动,从$ a_1 \ leq a_2 \ leq a_2 \ leq \ cdots \ cdots \ leq a_n $ at time $ t = 0 $,结束至$ b_1 \ leq b_1 \ leq b_2 \ leq b_2 \ leq \ leq \ cdots \ cdots \ leq b_n $ at time $ t = 1 $ t = 1 $ t = 1 $ t = 1 $ t = 1 $ t = 1 $ t = 1 $ t = 1 $ t = 1 $, $μ_{a_n} =(1/n)\ sum_ {i}δ_{a_i},μ_{b_n} =(1/n)\sum_iδ_{b_i} $是概率度量的离散化$μ_A,μ__b$。在$μ_a,μ_b$的规律性假设下,我们将粒子数量$ n $表示为无限,在任何时候$ 0 <t <1 $的极端颗粒的波动,在适当的重新恢复后,渐近地是通用的,融合到了空气点过程中。

In this paper we study fluctuations of extreme particles of nonintersecting Brownian bridges starting from $a_1\leq a_2\leq \cdots \leq a_n$ at time $t=0$ and ending at $b_1\leq b_2\leq \cdots\leq b_n$ at time $t=1$, where $μ_{A_n}=(1/n)\sum_{i}δ_{a_i}, μ_{B_n}=(1/n)\sum_i δ_{b_i}$ are discretization of probability measures $μ_A, μ_B$. Under regularity assumptions of $μ_A, μ_B$, we show as the number of particles $n$ goes to infinity, fluctuations of extreme particles at any time $0<t<1$, after proper rescaling, are asymptotically universal, converging to the Airy point process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源