论文标题

打结浮子同源性,链接浮子同源性和链接检测

Knot Floer homology, link Floer homology and link detection

论文作者

Binns, Fraser, Martin, Gage

论文摘要

我们为结和链接Floer同源性提供了新的链接检测结果,该结果受到Khovanov同源性的最新研究的启发。我们表明,结式同源物检测到$ t(2,4)$,$ t(2,6)$,$ t(3,3)$,$ l7n1 $和链接$ t(2,2n)$,其方向逆转。我们显示了所有$ n $的Link Floer同源性检测$ t(2,2n)$和$ t(n,n)$。此外,我们确定了许多链接的无限链接,因此,这对中的两个链接均通过链接浮子同源性检测到,但具有相同的Khovanov同源性和结Floer同源性。最后,我们使用一些结式检测结果来提供Annular Khovanov同源性的拓扑应用。

We give new link detection results for knot and link Floer homology inspired by recent work on Khovanov homology. We show that knot Floer homology detects $T(2,4)$, $T(2,6)$, $T(3,3)$, $L7n1$, and the link $T(2,2n)$ with the orientation of one component reversed. We show link Floer homology detects $T(2,2n)$ and $T(n,n)$, for all $n$. Additionally we identify infinitely many pairs of links such that both links in the pair are each detected by link Floer homology but have the same Khovanov homology and knot Floer homology. Finally, we use some of our knot Floer detection results to give topological applications of annular Khovanov homology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源