论文标题
$ z的黑洞质量= 2.805 $从速度分辨的时间延迟乘,乘以成像的类星体SDSS J2222+2745
The black hole mass of the $z=2.805$ multiply imaged quasar SDSS J2222+2745 from velocity-resolved time lags of the CIV emission line
论文作者
论文摘要
We present the first results of a 4.5 year monitoring campaign of the three bright images of multiply imaged $z=2.805$ quasar SDSS J2222+2745 using the Gemini North Multi-Object Spectrograph (GMOS-N) and the Nordic Optical Telescope (NOT).我们利用引力时间延迟来构建持续时间超过6年的光曲线,并在每个季节的8个月内达到10天的平均光谱节奏。使用多个次级校准器和高级还原技术,我们实现了百分比的分光光度计学精度,并进行了前所未有的混响映射分析,测量了CIV的集成和速度分辨时间滞后。全行滞后于$τ_ {\ rm cen} = 36.5^{+2.9} _ { - 3.9} $ REST-FRAME DAYS。我们将测量与已发布的CIV滞后相结合,并得出$ r _ {\ rm blr} -l $关系$ \ log_ {10}(τ/ {τ/ {\ rm day})=(1.00 \ pm 0.08) +(0.48 \ pm 0.04) \ log_ {10} [λl_λ(1350 {Å})/10^{44}〜{\ rm erg〜s}}^{ - 1} $ at 0.32 $ \ pm $ 0.06 dex dex intinsic saterce。速度解决的滞后与圆形开普勒轨道一致,带有$τ_ {\ rm cen} = 86.2^{+4.5} _ { - 5.0} $,$ 25^{+11} _ {+11} _ { - 15} $ { - 15} $,和$ 7.5^$ 4.2} $ 4.2} $ 4.2}机翼和红翼。使用$σ_{\ rm line} $与平均光谱一起使用,并假设$ \ log_ {10}(f _ {{\ rm nee},σ},σ},σ})= 0.52 \ pm 0.26 $,我们得出$ \ log_ {10}(10}(m _ _ _ _ {\ rm bh} {\ rm bh}} { 0.27 $。考虑到数据的质量,该系统代表了高红移处的$ M _ {\ rm bh} $估算器的校准的独特基准。未来的工作将介绍数据的动态建模,以限制病毒因子$ f $和$ m _ {\ rm bh} $。
We present the first results of a 4.5 year monitoring campaign of the three bright images of multiply imaged $z=2.805$ quasar SDSS J2222+2745 using the Gemini North Multi-Object Spectrograph (GMOS-N) and the Nordic Optical Telescope (NOT). We take advantage of gravitational time delays to construct light curves surpassing 6 years in duration and achieve average spectroscopic cadence of 10 days during the 8 months of visibility per season. Using multiple secondary calibrators and advanced reduction techniques, we achieve percent-level spectrophotometric precision and carry out an unprecedented reverberation mapping analysis, measuring both integrated and velocity-resolved time lags for CIV. The full line lags the continuum by $τ_{\rm cen} = 36.5^{+2.9}_{-3.9}$ rest-frame days. We combine our measurement with published CIV lags and derive the $r_{\rm BLR}-L$ relationship $\log_{10}( τ/ {\rm day}) = (1.00\pm 0.08) + (0.48\pm 0.04) \log_{10}[λL_λ(1350{Å})/10^{44}~{\rm erg ~s}^{-1}]$ with 0.32$\pm$0.06 dex intrinsic scatter. The velocity-resolved lags are consistent with circular Keplerian orbits, with $τ_{\rm cen} = 86.2^{+4.5}_{-5.0}$, $25^{+11}_{-15}$, and $7.5^{+4.2}_{-3.5}$ rest-frame days for the core, blue wing, and red wing, respectively. Using $σ_{\rm line}$ with the mean spectrum and assuming $\log_{10} (f_{{\rm mean},σ}) = 0.52 \pm 0.26$, we derive $\log_{10}(M_{\rm BH}/M_{\odot}) = 8.63 \pm 0.27$. Given the quality of the data, this system represents a unique benchmark for calibration of $M_{\rm BH}$ estimators at high redshift. Future work will present dynamical modeling of the data to constrain the virial factor $f$ and $M_{\rm BH}$.