论文标题
Vlengagement:用于评估基于人群的参与度的科学视频讲座数据集
VLEngagement: A Dataset of Scientific Video Lectures for Evaluating Population-based Engagement
论文作者
论文摘要
随着电子学习和个性化教育的出现,数字教育资源的生产和分配蓬勃发展。视频讲座现已成为当前数字时代群众授予群众知识的主要方式之一。视频讲座内容的快速创建挑战了当前建立的以人为中心的良好和质量保证管道,要求更有效,可扩展和自动解决方案来管理学习资源。尽管存在与参与教育视频有关的一些数据集,但仍有重要的数据和研究需求,旨在了解学习者与科学视频讲座的参与。本文介绍了Vlengagement,这是一个新颖的数据集,它由基于内容和视频的特定功能组成,该功能是从公开可用的科学视频讲座和与用户参与度相关的几个指标中提取的。我们介绍了几种与预测和理解视频讲座中的情境不足的参与有关的新任务,并提供了初步基线。据我们所知,这是处理此类任务的最大,最多样化的公开数据集。基于Wikipedia主题的功能的提取还允许将更复杂的基于Wikipedia的功能关联到数据集中,以改善这些任务的性能。数据集,辅助工具和示例代码段可在https://github.com/sahanbull/context-agnostic-engagement上公开获得
With the emergence of e-learning and personalised education, the production and distribution of digital educational resources have boomed. Video lectures have now become one of the primary modalities to impart knowledge to masses in the current digital age. The rapid creation of video lecture content challenges the currently established human-centred moderation and quality assurance pipeline, demanding for more efficient, scalable and automatic solutions for managing learning resources. Although a few datasets related to engagement with educational videos exist, there is still an important need for data and research aimed at understanding learner engagement with scientific video lectures. This paper introduces VLEngagement, a novel dataset that consists of content-based and video-specific features extracted from publicly available scientific video lectures and several metrics related to user engagement. We introduce several novel tasks related to predicting and understanding context-agnostic engagement in video lectures, providing preliminary baselines. This is the largest and most diverse publicly available dataset to our knowledge that deals with such tasks. The extraction of Wikipedia topic-based features also allows associating more sophisticated Wikipedia based features to the dataset to improve the performance in these tasks. The dataset, helper tools and example code snippets are available publicly at https://github.com/sahanbull/context-agnostic-engagement