论文标题

retroxpert:分解反归结预测,例如化学家

RetroXpert: Decompose Retrosynthesis Prediction like a Chemist

论文作者

Yan, Chaochao, Ding, Qianggang, Zhao, Peilin, Zheng, Shuangjia, Yang, Jinyu, Yu, Yang, Huang, Junzhou

论文摘要

逆合合成是将目标分子递归分解为可用的构件的过程。它在解决有机综合计划中的问题中起着重要作用。为了自动化或协助返回合成分析,已经提出了各种反转合并算法。但是,他们中的大多数都很麻烦,并且对他们的预测缺乏解释性。在本文中,我们设计了一种新型的无模板算法,用于由化学家如何接近逆合合成预测的自动反折叠式扩展。我们的方法将反转合成分为两个步骤:i)通过新型的图神经网络识别靶分子的潜在反应中心,并生成中间的同步物,ii)通过强大的反应物产生模型生成与合成器相关的反应物。我们的模型在超出最先进的基线的情况下,还提供了化学合理的解释。

Retrosynthesis is the process of recursively decomposing target molecules into available building blocks. It plays an important role in solving problems in organic synthesis planning. To automate or assist in the retrosynthesis analysis, various retrosynthesis prediction algorithms have been proposed. However, most of them are cumbersome and lack interpretability about their predictions. In this paper, we devise a novel template-free algorithm for automatic retrosynthetic expansion inspired by how chemists approach retrosynthesis prediction. Our method disassembles retrosynthesis into two steps: i) identify the potential reaction center of the target molecule through a novel graph neural network and generate intermediate synthons, and ii) generate the reactants associated with synthons via a robust reactant generation model. While outperforming the state-of-the-art baselines by a significant margin, our model also provides chemically reasonable interpretation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源