论文标题
学习有效的特定任务的元元素和单词棱镜
Learning Efficient Task-Specific Meta-Embeddings with Word Prisms
论文作者
论文摘要
根据训练时定义的上下文概念,训练了单词嵌入以预测单词共发生的统计数据,这使它们具有不同的词汇属性(句法,语义等)。这些属性在查询最相似的向量的嵌入空间时以及在训练解决下游NLP问题的深神经网络的输入层时都表现出来。 Meta-EmbedDings结合了多组受过不同训练的单词嵌入,并且已证明可以成功地改善仅使用一组源嵌入的等效模型,从而成功地改善了内在和外部性能。我们介绍了单词棱镜:一种简单有效的元装置方法,该方法学会根据手头的任务结合源嵌入。单词棱镜学习正交转换以线性结合输入源嵌入,这使它们在推理时可以非常有效。我们根据六个外部评估的其他元装置方法对单词棱镜进行了评估,并观察到单词棱镜在所有任务上都可以提高绩效。
Word embeddings are trained to predict word cooccurrence statistics, which leads them to possess different lexical properties (syntactic, semantic, etc.) depending on the notion of context defined at training time. These properties manifest when querying the embedding space for the most similar vectors, and when used at the input layer of deep neural networks trained to solve downstream NLP problems. Meta-embeddings combine multiple sets of differently trained word embeddings, and have been shown to successfully improve intrinsic and extrinsic performance over equivalent models which use just one set of source embeddings. We introduce word prisms: a simple and efficient meta-embedding method that learns to combine source embeddings according to the task at hand. Word prisms learn orthogonal transformations to linearly combine the input source embeddings, which allows them to be very efficient at inference time. We evaluate word prisms in comparison to other meta-embedding methods on six extrinsic evaluations and observe that word prisms offer improvements in performance on all tasks.