论文标题
超多人物的DEEPM&MNET:使用操作员的神经网络近似正常冲击背后的耦合流量和有限速率化学反应
DeepM&Mnet for hypersonics: Predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network approximation of operators
论文作者
论文摘要
在高速流经正常冲击的高速流中,流体温度迅速触发下游化学解离反应。化学变化会导致流体特性的明显变化,这些耦合的多物理学以及由此产生的多尺度动力学在数值方面具有挑战性。使用常规的计算流体动力学(CFD)需要过多的计算成本。在这里,我们提出了一种全新的有效方法,假设有一些可以无缝集成在模拟算法中的状态变量的稀疏测量。我们采用一个特殊的神经网络来近似非线性操作员DeepOnet,该网络用于分别预测每个字段,并从耦合多物理系统的其余领域给定输入。我们通过预测高马赫数以及速度和温度场的正常冲击的非平衡化学中的五个物种来证明DeWonet的有效性。我们表明,在训练后,deponets的数量级超过五个数量级,比用于生成训练数据的CFD求解器要快五个数量级,并在培训范围内为看不见的马赫数提供了良好的准确性。除此范围之外,如果有一些稀疏测量值,DeepOnet仍然可以准确,快速预测。然后,我们提出了一个复合监督的神经网络DEEPM&MNET,该网络使用多个预训练的Deponets作为构建块和分散的测量,以推断整个感兴趣的域中所有七个领域的集合。测试了两个DEEPM和MNET架构,我们证明了有效数据同化的准确性和能力。 DEEPM&MNET是简单且概括的:可以使用“插入式”模式中的预训练的deponets构建复杂的多物理学和多尺度模型,并使用预训练的deponets吸收稀疏测量。
In high-speed flow past a normal shock, the fluid temperature rises rapidly triggering downstream chemical dissociation reactions. The chemical changes lead to appreciable changes in fluid properties, and these coupled multiphysics and the resulting multiscale dynamics are challenging to resolve numerically. Using conventional computational fluid dynamics (CFD) requires excessive computing cost. Here, we propose a totally new efficient approach, assuming that some sparse measurements of the state variables are available that can be seamlessly integrated in the simulation algorithm. We employ a special neural network for approximating nonlinear operators, the DeepONet, which is used to predict separately each individual field, given inputs from the rest of the fields of the coupled multiphysics system. We demonstrate the effectiveness of DeepONet by predicting five species in the non-equilibrium chemistry downstream of a normal shock at high Mach numbers as well as the velocity and temperature fields. We show that upon training, DeepONets can be over five orders of magnitude faster than the CFD solver employed to generate the training data and yield good accuracy for unseen Mach numbers within the range of training. Outside this range, DeepONet can still predict accurately and fast if a few sparse measurements are available. We then propose a composite supervised neural network, DeepM&Mnet, that uses multiple pre-trained DeepONets as building blocks and scattered measurements to infer the set of all seven fields in the entire domain of interest. Two DeepM&Mnet architectures are tested, and we demonstrate the accuracy and capacity for efficient data assimilation. DeepM&Mnet is simple and general: it can be employed to construct complex multiphysics and multiscale models and assimilate sparse measurements using pre-trained DeepONets in a "plug-and-play" mode.