论文标题
用于参与代数
Hyperoctahedral Homology for Involutive Algebras
论文作者
论文摘要
高肠面体同源性是与高二十字体的简单基团相关的同源理论。它被定义为使用Foundor同源性和Fiedorowicz的Hyperoctahedral bar构造在交换环上的参与代数定义。该论文的主要结果证明,高肠面体同源性与模棱两可的稳定同义理论有关:对于一个离散的奇数组,该组代数的高核心同源性与固定点的同源性是同构的同构,该固定点是从该组的分类空间内建立的equivariant Infinite loop空间的相关性。
Hyperoctahedral homology is the homology theory associated to the hyperoctahedral crossed simplicial group. It is defined for involutive algebras over a commutative ring using functor homology and the hyperoctahedral bar construction of Fiedorowicz. The main result of the paper proves that hyperoctahedral homology is related to equivariant stable homotopy theory: for a discrete group of odd order, the hyperoctahedral homology of the group algebra is isomorphic to the homology of the fixed points under the involution of an equivariant infinite loop space built from the classifying space of the group.