论文标题

相关世界理论:结构和一致性

Correlated Worldline theory: Structure and Consistency

论文作者

Barvinsky, A. O., Wilson-Gerow, J., Stamp, P. C. E.

论文摘要

我们对量子重力的“相关世界”理论提供了正式处理。生成功能以耦合物质和重力场的多个副本而写成。通过重力本身,田间的路径相关。在重力耦合$ g \ rightarrow 0 $的极限中,恢复了常规的量子场理论;在经典限制$ \ hbar \ rightarrow 0 $中,恢复了一般相对论。得出了正式的循环扩展,所有条款最多可显式地给定的一环订单$ \ sim o(l_p^2)$,其中$ l_p $是planck的长度。然后,我们在背景字段周围以$ l_p^2 $的形式得出了扰动扩展的形式,其相关功能明确指定为$ \ sim o(l_p^2)$。最后,我们明确地证明了该理论的固定仪表独立性,以$ l_p^2 $重力耦合和物质循环的所有订单,并得出相关的病房身份。

We give a formal treatment of the "Correlated Worldline" theory of quantum gravity. The generating functional is written as a product over multiple copies of the coupled matter and gravitational fields; paths for fields are correlated via gravity itself. In the limit where the gravitational coupling $G \rightarrow 0$, conventional quantum field theory is recovered; in the classical limit $\hbar \rightarrow 0$, General Relativity is recovered. A formal loop expansion is derived, with all terms up to one-loop order $\sim O(l_P^2)$ given explicitly, where $l_P$ is the Planck length. We then derive the form of a perturbation expansion in $l_P^2$ around a background field, with the correlation functions given explicitly up to $\sim O(l_P^2)$. Finally, we explicitly demonstrate the on-shell gauge independence of the theory, to order $l_P^2$ in gravitational coupling and to all orders in matter loops, and derive the relevant Ward identities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源