论文标题

扭曲和折叠的Auslander-Reiten颤音以及对量子代数的表示理论的应用

Twisted and folded Auslander-Reiten quivers and applications to the representation theory of quantum affine algebras

论文作者

Oh, Se-jin, Suh, Uhi Rinn

论文摘要

在本文中,我们介绍了类型$ a_ {2n+1} $,$ d_ {n+1} $,$ e_6 $和$ d_4 $的扭曲和折叠的AR-Quivers,与(Triply)扭曲的Coxed Coxeter Elements相关。使用类型$ a_ {2n+1} $和$ d_ {n+1} $的Quivers,我们描述了分母公式和多里(Dorey)的量子代数$ u'_q(b^{(1)} _ {n+1})$和$ u'_q(c^(c^(1)} _ {1)量子仿射代数。更准确地说,我们可以阅读$ u'_q(b^{(1)} _ {n+1})$($ u'_q(c^{(1)} _ {n})$的分母公式(b^{(1)} _ {n+1})$($ u'_q(c^{(1)} _ {n})$,使用某些折叠的Ar-quiver of type $ a_______的n priover of type $ a_ {2n+1} $ n e n+a {对于$ u'_q(b^{(1)} _ {n+1})$(resp。U'_q(c^{(1)} _ {n})$)在扭曲的ar-quiver中应用最小对的概念。通过采用相同的参数,我们提出了$ u'_q(f^{(1)} _ {4})$和$ u'_q(g^{(1)_ {2})$的u'_q(f^{(1)_ {4})$ u'_q(f^{(1)_ {2})$的猜想分母公式和多里(Dorey)规则。

In this paper, we introduce twisted and folded AR-quivers of type $A_{2n+1}$, $D_{n+1}$, $E_6$ and $D_4$ associated to (triply) twisted Coxeter elements. Using the quivers of type $A_{2n+1}$ and $D_{n+1}$, we describe the denominator formulas and Dorey's rule for quantum affine algebras $U'_q(B^{(1)}_{n+1})$ and $U'_q(C^{(1)}_{n})$, which are important information of representation theory of quantum affine algebras. More precisely, we can read the denominator formulas for $U'_q(B^{(1)}_{n+1})$ (resp. $U'_q(C^{(1)}_{n})$) using certain statistics on any folded AR-quiver of type $A_{2n+1}$ (resp. $D_{n+1}$) and Dorey's rule for $U'_q(B^{(1)}_{n+1})$ (resp. $U'_q(C^{(1)}_{n})$) applying the notion of minimal pairs in a twisted AR-quiver. By adopting the same arguments, we propose the conjectural denominator formulas and Dorey's rule for $U'_q(F^{(1)}_{4})$ and $U'_q(G^{(1)}_{2})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源