论文标题
从以自我为中心的视觉输入学习人类搜索行为
Learning Human Search Behavior from Egocentric Visual Inputs
论文作者
论文摘要
“寻找事物”是我们在日常生活中反复继续执行的一项平凡但至关重要的任务。我们介绍了一种方法来开发一种能够使用其运动能力和以RGBD图像表示的详细的3D场景中搜索随机位置的目标对象的人物。通过从人类角色中剥夺特权3D信息,它被迫同时移动并环顾四周,以说明受限的感应能力,从而导致自然导航和搜索行为。我们的方法由两个组成部分组成:1)基于抽象字符模型的搜索控制策略,以及2)在线重新启动控制模块,用于根据搜索策略计划的轨迹合成详细的运动学运动。我们证明,合并的技术使角色能够有效地在室内环境中找到经常被遮挡的家居用品。相同的搜索策略可以应用于不同的全身字符,而无需重新培训。我们通过在随机生成的方案上测试方法来定量评估我们的方法。我们的工作是创建具有人类式行为的智能虚拟代理的第一步,该行为是由车载传感器驱动的,为未来的机器人应用铺平了道路。
"Looking for things" is a mundane but critical task we repeatedly carry on in our daily life. We introduce a method to develop a human character capable of searching for a randomly located target object in a detailed 3D scene using its locomotion capability and egocentric vision perception represented as RGBD images. By depriving the privileged 3D information from the human character, it is forced to move and look around simultaneously to account for the restricted sensing capability, resulting in natural navigation and search behaviors. Our method consists of two components: 1) a search control policy based on an abstract character model, and 2) an online replanning control module for synthesizing detailed kinematic motion based on the trajectories planned by the search policy. We demonstrate that the combined techniques enable the character to effectively find often occluded household items in indoor environments. The same search policy can be applied to different full-body characters without the need for retraining. We evaluate our method quantitatively by testing it on randomly generated scenarios. Our work is a first step toward creating intelligent virtual agents with humanlike behaviors driven by onboard sensors, paving the road toward future robotic applications.