论文标题
匹配驾驶员与骑手:两阶段的强大方法
Matching Drivers to Riders: A Two-stage Robust Approach
论文作者
论文摘要
对于乘车共享平台而言,匹配的需求(骑手)有效地供应(驾驶员)是一个基本问题,这些平台需要在请求到达时,只有关于未来乘车请求的部分知识就需要匹配骑手(几乎)。一种计算当前请求的最佳匹配的近视方法忽略未来的不确定性可能是高度最佳的。在本文中,我们考虑了这个匹配问题的两个阶段可靠的优化框架,其中使用一组需求方案(明确或隐式指定)对未来需求不确定性进行建模。目的是将当前请求与驾驶员(在第一阶段)进行匹配,以便将第一阶段匹配的成本和在所有情况下的第二阶段匹配方案中最糟糕的成本降低。我们表明,在各种成本函数下,两个阶段的鲁棒匹配是NP匹配,并且为我们的两阶段问题的不同设置提供了恒定的近似算法。此外,我们测试了深圳市对现实生活中的出租车数据的算法,并表明它们可以大大改善近视解决方案并减少第二阶段骑手的最大等待时间。
Matching demand (riders) to supply (drivers) efficiently is a fundamental problem for ride-sharing platforms who need to match the riders (almost) as soon as the request arrives with only partial knowledge about future ride requests. A myopic approach that computes an optimal matching for current requests ignoring future uncertainty can be highly sub-optimal. In this paper, we consider a two-stage robust optimization framework for this matching problem where future demand uncertainty is modeled using a set of demand scenarios (specified explicitly or implicitly). The goal is to match the current request to drivers (in the first stage) so that the cost of first-stage matching and the worst-case cost over all scenarios for the second-stage matching is minimized. We show that the two-stage robust matching is NP-hard under various cost functions and present constant approximation algorithms for different settings of our two-stage problem. Furthermore, we test our algorithms on real-life taxi data from the city of Shenzhen and show that they substantially improve upon myopic solutions and reduce the maximum wait time of the second-stage riders.