论文标题
揭露通讯合作伙伴:一种低成本的AI解决方案,用于以数字方式删除基于VR的触发性的头部安装显示器
Unmasking Communication Partners: A Low-Cost AI Solution for Digitally Removing Head-Mounted Displays in VR-Based Telepresence
论文作者
论文摘要
当参与者穿着头部安装显示器(HMD)时,虚拟现实中的面对面对话是一个挑战。参与者脸的很大一部分是隐藏的,面部表情很难感知。过去的研究表明,在具有高成本硬件的实验室条件下,可以在VR中使用个人化头像进行高保真脸部重建。在本文中,我们建议仅使用开源软件和负担得起的硬件的第一个低成本系统之一。我们的方法是使用卷积神经网络(CNN)跟踪HMD下方的用户面孔,并使用生成的对抗网络(GAN)生成相应的表达式,以生成该人脸的RGBD图像。我们使用具有低成本扩展名的商品硬件,例如3D打印的安装座和微型相机。我们的方法在没有手动干预的情况下端到端学习,实时运行,可以在普通游戏计算机上进行培训和执行。我们报告的评估结果表明,我们的低成本系统没有使用高端硬件和封闭的源软件实现相同的研究原型保真度,但是它能够在运动和表达中创建具有特定于人的特定特征的个体面包。
Face-to-face conversation in Virtual Reality (VR) is a challenge when participants wear head-mounted displays (HMD). A significant portion of a participant's face is hidden and facial expressions are difficult to perceive. Past research has shown that high-fidelity face reconstruction with personal avatars in VR is possible under laboratory conditions with high-cost hardware. In this paper, we propose one of the first low-cost systems for this task which uses only open source, free software and affordable hardware. Our approach is to track the user's face underneath the HMD utilizing a Convolutional Neural Network (CNN) and generate corresponding expressions with Generative Adversarial Networks (GAN) for producing RGBD images of the person's face. We use commodity hardware with low-cost extensions such as 3D-printed mounts and miniature cameras. Our approach learns end-to-end without manual intervention, runs in real time, and can be trained and executed on an ordinary gaming computer. We report evaluation results showing that our low-cost system does not achieve the same fidelity of research prototypes using high-end hardware and closed source software, but it is capable of creating individual facial avatars with person-specific characteristics in movements and expressions.