论文标题
缺陷状态及其电场增强的电子热发射,浓度为ZR的β-GA2O3晶体
Defect states and their electric field-enhanced electron thermal emission in heavily Zr-doped beta-Ga2O3 crystals
论文作者
论文摘要
在Schottky二极管上执行深层瞬态光谱(DLT),我们研究了在Czochralski(CZ)(CZ)中的传导带最小值(EC)以下的缺陷水平,该缺陷在无意识的(UID)和垂直梯度冻结(VGF)ZR ZR ZR ZR-APED BETA BETA BETA BETA-GA2O2O3 CYRALS中。在电子浓度为10^17 cm-3的UID晶体中,除了先前报道的0.86(E2)和1.03 eV(E3)水平,我们还观察到0.18 eV的水平和0.46 eV。对于10^18 cm-3 Zr掺杂的GA2O3,存在0.30 eV(E15)和0.71 eV(E16)的签名。对于5*10^18 cm-3的最高ZR掺杂,我们仅观察到一个签名为0.59 eV。通过增加测量过程中的反向偏置,可以证明电场增强的排放率。 UID样品中的0.86 eV特征显示了声子辅助隧道增强的热发射,并且与广泛报道的E2(FEGA)缺陷一致。下ZR掺杂晶体中的0.71 eV(E16)特征还表现出声子辅助隧道发射的增强。考虑到ZR掺杂二极管中的高掺杂也增加了电场,我们建议最高ZR掺杂样品中的0.59 eV签名可能对应于低掺杂样品中的0.71 eV签名。我们的分析强调了对现场增强发射的测试和报告的重要性,尤其是在DLT期间存在的电场,以及在β-GA2O3上进行的其他表征实验,以及标准的发射能,横截面和经Lambda校正后的陷阱密度。这很重要,因为在高场设备中使用β-GA2O3的目的是使用β-GA2O3以及许多可能的掺杂数量级。
Performing deep level transient spectroscopy (DLTS) on Schottky diodes, we investigated defect levels below the conduction band minima (Ec) in Czochralski (CZ) grown unintentionally-doped (UID) and vertical gradient freeze (VGF)-grown Zr-doped beta-Ga2O3 crystals. In UID crystals with an electron concentration of 10^17 cm-3, we observe levels at 0.18 eV and 0.46 eV in addition to the previously reported 0.86 (E2) and 1.03 eV (E3) levels. For 10^18 cm-3 Zr-doped Ga2O3, signatures at 0.30 eV (E15) and 0.71 eV (E16) are present. For the highest Zr doping of 5*10^18 cm-3, we observe only one signature at 0.59 eV. Electric field-enhanced emission rates are demonstrated via increasing the reverse bias during measurement. The 0.86 eV signature in the UID sample displays phonon-assisted tunneling enhanced thermal emission and is consistent with the widely reported E2 (FeGa) defect. The 0.71 eV (E16) signature in the lower-Zr-doped crystal also exhibits phonon-assisted tunneling emission enhancement. Taking into account that the high doping in the Zr-doped diodes also increases the electric field, we propose that the 0.59 eV signature in the highest Zr-doped sample likely corresponds to the 0.71 eV signature in lower-doped samples. Our analysis highlights the importance of testing for and reporting on field-enhanced emission especially the electric field present during DLTS and other characterization experiments on beta-Ga2O3 along with the standard emission energy, cross-section, and lambda-corrected trap density. This is important because of the intended use of beta-Ga2O3 in high-field devices and the many orders of magnitude of possible doping.