论文标题

罗宾:一种在强大估计中使用不变式拒绝异常值的图理论方法

ROBIN: a Graph-Theoretic Approach to Reject Outliers in Robust Estimation using Invariants

论文作者

Shi, Jingnan, Yang, Heng, Carlone, Luca

论文摘要

机器人技术,计算机视觉和学习中的许多估计问题需要面对异常值的估计数量。离群值通常是数据关联或特征匹配不正确的结果,通常存在超过90%用于估计的测量值的问题是离群值。尽管当前的可靠估计方法能够处理适度的异常值,但在存在许多异常值的情况下,它们无法产生准确的估计。本文开发了一种修剪异常值的方法。首先,我们开发了一种不变性理论,该理论使我们能够快速检查一部分测量值是否相互兼容,而无需明确解决估计问题。其次,我们开发了一个图理论框架,在该框架中,将测量值建模为顶点,并由边缘捕获相互兼容性。我们概括了现有的结果,表明该图中的inliers形成了一个集团,通常属于最大集团。我们还表明,在实践中,兼容图的最大k核提供了最大集团的近似值,同时更快地计算大问题。这两个贡献导致了罗宾,这是我们基于不变的拒绝异常值的方法,这使我们能够在通用估计问题中迅速修剪异常值。我们在四个几何感知问题中展示了罗宾,并表明它可以提高现有求解器的稳健性,同时在大型问题中以毫秒的速度运行。

Many estimation problems in robotics, computer vision, and learning require estimating unknown quantities in the face of outliers. Outliers are typically the result of incorrect data association or feature matching, and it is common to have problems where more than 90% of the measurements used for estimation are outliers. While current approaches for robust estimation are able to deal with moderate amounts of outliers, they fail to produce accurate estimates in the presence of many outliers. This paper develops an approach to prune outliers. First, we develop a theory of invariance that allows us to quickly check if a subset of measurements are mutually compatible without explicitly solving the estimation problem. Second, we develop a graph-theoretic framework, where measurements are modeled as vertices and mutual compatibility is captured by edges. We generalize existing results showing that the inliers form a clique in this graph and typically belong to the maximum clique. We also show that in practice the maximum k-core of the compatibility graph provides an approximation of the maximum clique, while being faster to compute in large problems. These two contributions leads to ROBIN, our approach to Reject Outliers Based on INvariants, which allows us to quickly prune outliers in generic estimation problems. We demonstrate ROBIN in four geometric perception problems and show it boosts robustness of existing solvers while running in milliseconds in large problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源