论文标题
高阶频镜平均功能:与Melnikov功能的一般关系
Higher order stroboscopic averaged functions: a general relationship with Melnikov functions
论文作者
论文摘要
在研究文献中,可以找到针对常规扰动的非自治$ t $ t $的高阶平均功能的不同概念。一方面,经典(频道)平均方法根据某些唯一定义的函数为其解决方案提供了渐近估计,$ \ mathbf {g} _i $'的平均功能,称为平均功能,这些功能是通过近乎身份的频道变换获得的,并通过求解和求解差异方程。另一方面,采用Melnikov程序来获得分叉函数$ \ Mathbf {f} _i $在某种意义上控制上述微分方程的隔离$ t $ - 周期解决方案的存在。在研究文献中,分叉函数$ \ mathbf {f} _i $有时也称为平均功能,尽管如此,它们还获得了Poincaré-Pontryagin-Melnikov函数的名称,或者只是Melnikov功能。众所周知,$ \ mathbf {f} _1 = t \ mathbf {g} _1,$ $ \ mathbf {g} _i $和$ \ mathbf {f} _i $之间的一般关系是$ i \ geq的2. $ i \ geq 2的未知,在这里为$ i \ geq 2所提供的一般关系,这是一个差异的一般关系。任何顺序的平均功能,避免了处理近乎认同转换和同源方程的必要性。此外,还提供了实现的数学算法,用于计算两个高阶平均函数。
In the research literature, one can find distinct notions for higher order averaged functions of regularly perturbed non-autonomous $T$- periodic differential equations of the kind $x'=\varepsilon F(t,x,\varepsilon)$. By one hand, the classical (stroboscopic) averaging method provides asymptotic estimates for its solutions in terms of some uniquely defined functions $\mathbf{g}_i$'s, called averaged functions, which are obtained through near-identity stroboscopic transformations and by solving homological equations. On the other hand, a Melnikov procedure is employed to obtain bifurcation functions $\mathbf{f}_i$'s which controls in some sense the existence of isolated $T$-periodic solutions of the differential equation above. In the research literature, the bifurcation functions $\mathbf{f}_i$'s are sometimes likewise called averaged functions, nevertheless, they also receive the name of Poincaré-Pontryagin-Melnikov functions or just Melnikov functions. While it is known that $\mathbf{f}_1=T \mathbf{g}_1,$ a general relationship between $\mathbf{g}_i$ and $\mathbf{f}_i$ is not known so far for $i\geq 2.$ Here, such a general relationship between these two distinct notions of averaged functions is provided, which allows the computation of the stroboscopic averaged functions of any order avoiding the necessity of dealing with near-identity transformations and homological equations. In addition, an Appendix is provided with implemented Mathematica algorithms for computing both higher order averaging functions.