论文标题

域内无监督的高光谱重建,用于飞行图像

Domain-Aware Unsupervised Hyperspectral Reconstruction for Aerial Image Dehazing

论文作者

Mehta, Aditya, Sinha, Harsh, Mandal, Murari, Narang, Pratik

论文摘要

由于空间细节的差异和对​​比度有很大的变化,因此空中图像中的雾度去除是一个具有挑战性的问题。颗粒物密度的变化通常会导致可见度降解。因此,几种方法利用多光谱数据作为辅助信息进行雾霾去除。在本文中,我们提出了Skygan在空中图像中去除雾度。 Skygan由1)一个域吸引了朦胧到高音(H2H)模块,以及2)有条件的GAN(CGAN)基于Dimimage-image-Image Transibe Translation模块(I2I)用于飞行。提出的H2H模块以无监督的方式从RGB图像中重建了几个视觉带,这克服了缺乏朦胧的高光谱空中图像数据集。该模块利用任务监督和域的适应性,以创建图像飞行的“高光谱催化剂”。 I2i模块使用高光谱催化剂以及12通道多提示输入,并通过利用整个视觉谱来执行有效的图像飞行。此外,这项工作还引入了一个新的数据集,称为“朦胧天线图像”(HAI)数据集,其中包含超过65,000对朦胧和地面真相的空中图像,具有逼真的,非均匀的密度雾度。在最近的SateHaze1k数据集以及HAI数据集上评估了Skygan的性能。我们还对HAI数据集进行了全面的评估,该数据集则以PSNR和SSIM为代表性的最先进技术。

Haze removal in aerial images is a challenging problem due to considerable variation in spatial details and varying contrast. Changes in particulate matter density often lead to degradation in visibility. Therefore, several approaches utilize multi-spectral data as auxiliary information for haze removal. In this paper, we propose SkyGAN for haze removal in aerial images. SkyGAN consists of 1) a domain-aware hazy-to-hyperspectral (H2H) module, and 2) a conditional GAN (cGAN) based multi-cue image-to-image translation module (I2I) for dehazing. The proposed H2H module reconstructs several visual bands from RGB images in an unsupervised manner, which overcomes the lack of hazy hyperspectral aerial image datasets. The module utilizes task supervision and domain adaptation in order to create a "hyperspectral catalyst" for image dehazing. The I2I module uses the hyperspectral catalyst along with a 12-channel multi-cue input and performs effective image dehazing by utilizing the entire visual spectrum. In addition, this work introduces a new dataset, called Hazy Aerial-Image (HAI) dataset, that contains more than 65,000 pairs of hazy and ground truth aerial images with realistic, non-homogeneous haze of varying density. The performance of SkyGAN is evaluated on the recent SateHaze1k dataset as well as the HAI dataset. We also present a comprehensive evaluation of HAI dataset with a representative set of state-of-the-art techniques in terms of PSNR and SSIM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源