论文标题
在显微镜图像中自动细胞计数的深度监督密度回归
Deeply-Supervised Density Regression for Automatic Cell Counting in Microscopy Images
论文作者
论文摘要
在许多医学诊断和生物学研究中,需要准确计算显微镜图像中的细胞数量。这项任务乏味,耗时,容易出现主观错误。但是,由于图像对比度低,复杂背景,细胞形状和计数的较大差异以及二维显微镜图像中的明显细胞闭塞,设计自动计数方法仍然具有挑战性。在这项研究中,我们提出了一种基于新密度回归的方法,用于在显微镜图像中自动计算细胞。该方法与其他基于最新密度回归的方法相比,处理了两项创新。首先,密度回归模型(DRM)被设计为串联的完全卷积回归网络(C-FCRN),以利用多尺度图像特征来估算给定图像的单元密度图。其次,辅助卷积神经网络(AUXCNN)用于协助培训设计的C-FCRN的中间层,以改善看不见的数据集中的DRM性能。在四个数据集上评估的实验研究证明了该方法的出色性能。
Accurately counting the number of cells in microscopy images is required in many medical diagnosis and biological studies. This task is tedious, time-consuming, and prone to subjective errors. However, designing automatic counting methods remains challenging due to low image contrast, complex background, large variance in cell shapes and counts, and significant cell occlusions in two-dimensional microscopy images. In this study, we proposed a new density regression-based method for automatically counting cells in microscopy images. The proposed method processes two innovations compared to other state-of-the-art density regression-based methods. First, the density regression model (DRM) is designed as a concatenated fully convolutional regression network (C-FCRN) to employ multi-scale image features for the estimation of cell density maps from given images. Second, auxiliary convolutional neural networks (AuxCNNs) are employed to assist in the training of intermediate layers of the designed C-FCRN to improve the DRM performance on unseen datasets. Experimental studies evaluated on four datasets demonstrate the superior performance of the proposed method.