论文标题
对未知非线性系统的显式模型预测控制的深度学习替代方案
Deep Learning Alternative to Explicit Model Predictive Control for Unknown Nonlinear Systems
论文作者
论文摘要
我们将可区分的预测控制(DPC)作为未知非线性系统的显式模型预测控制(MPC)的深度替代品。在DPC框架中,从系统动力学的时间序列测量中学到了神经状态空间模型。然后,通过通过闭环系统动力学模型区分MPC损耗函数,通过随机梯度下降方法优化神经控制策略。所提出的DPC方法通过状态和输入约束学习基于模型的控制策略,同时支持时变的参考和约束。在使用Raspberry-Pi平台的嵌入式实现中,我们通过实验表明,纯粹基于未知的非线性系统的测量值可以纯粹训练受约束的控制策略。我们将DPC方法的控制性能与明确的MPC进行了比较,并报告在线计算需求,内存需求,策略复杂性和施工时间中的效率提高。特别是,我们表明我们的方法与通过多参数编程求解的显式MPC的指数可扩展性进行线性缩放。
We present differentiable predictive control (DPC) as a deep learning-based alternative to the explicit model predictive control (MPC) for unknown nonlinear systems. In the DPC framework, a neural state-space model is learned from time-series measurements of the system dynamics. The neural control policy is then optimized via stochastic gradient descent approach by differentiating the MPC loss function through the closed-loop system dynamics model. The proposed DPC method learns model-based control policies with state and input constraints, while supporting time-varying references and constraints. In embedded implementation using a Raspberry-Pi platform, we experimentally demonstrate that it is possible to train constrained control policies purely based on the measurements of the unknown nonlinear system. We compare the control performance of the DPC method against explicit MPC and report efficiency gains in online computational demands, memory requirements, policy complexity, and construction time. In particular, we show that our method scales linearly compared to exponential scalability of the explicit MPC solved via multiparametric programming.