论文标题

量子组合游戏:结构和计算复杂性

Quantum Combinatorial Games: Structures and Computational Complexity

论文作者

Burke, Kyle, Ferland, Matthew, Teng, Shang-Hua

论文摘要

最近,提出了一个标准化的框架,用于在数学游戏中引入量子启发的动作,并没有机会,没有机会。量子游戏综合性在代表方面的美丽,富含结构,复杂性爆炸性,令人眼花of乱,并具有精致的战略推理,使我们吸引了我们玩充满微妙的混凝土游戏,并表征了与复杂性后果有关的抽象属性。除了单个游戏之外,我们探索了量子组合游戏的整体典型性,并解决了基本问题,包括: 复杂性的量子飞跃:是否存在量子扩展的多项式时间可溶剂游戏? 量子的复杂性崩溃:是否存在Pspace-Complete游戏,其量子扩展落在多项式层次结构的较低级别上? 量子性重要:在量子移动下,结果类别和策略如何变化?在什么条件下,量子不重要? 量子飞跃的PSPACE屏障:可以量子移动将Pspace游戏启动到外部多项式空间 我们表明,量子不仅可以丰富游戏结构,而且会影响其计算复杂性。在解决其中一些基本问题时,我们表征了量子移动的功能和局限性以及它们创建的游戏配置的叠加。我们对混凝土量子NIM和量子无向地理的复杂性的飞跃的建设性证明,以及在量子设置中的连续崩溃,在抽象的Pspace-Complete游戏中的复杂性与多项式层次结构级别的每个级别的复杂性,使量子层面上的计算范围引人注目。我们的研究还使我们能够确定量子组合游戏理论(QCGT)基础的几个优雅的开放问题。

Recently, a standardized framework was proposed for introducing quantum-inspired moves in mathematical games with perfect information and no chance. The beauty of quantum games-succinct in representation, rich in structures, explosive in complexity, dazzling for visualization, and sophisticated for strategic reasoning-has drawn us to play concrete games full of subtleties and to characterize abstract properties pertinent to complexity consequence. Going beyond individual games, we explore the tractability of quantum combinatorial games as whole, and address fundamental questions including: Quantum Leap in Complexity: Are there polynomial-time solvable games whose quantum extensions are intractable? Quantum Collapses in Complexity: Are there PSPACE-complete games whose quantum extensions fall to the lower levels of the polynomial-time hierarchy? Quantumness Matters: How do outcome classes and strategies change under quantum moves? Under what conditions doesn't quantumness matter? PSPACE Barrier for Quantum Leap: Can quantum moves launch PSPACE games into outer polynomial space We show that quantum moves not only enrich the game structure, but also impact their computational complexity. In settling some of these basic questions, we characterize both the powers and limitations of quantum moves as well as the superposition of game configurations that they create. Our constructive proofs-both on the leap of complexity in concrete Quantum Nim and Quantum Undirected Geography and on the continuous collapses, in the quantum setting, of complexity in abstract PSPACE-complete games to each level of the polynomial-time hierarchy-illustrate the striking computational landscape over quantum games and highlight surprising turns with unexpected quantum impact. Our studies also enable us to identify several elegant open questions fundamental to quantum combinatorial game theory (QCGT).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源