论文标题

流插图:用胶囊网络进行动作识别的光流估计

FlowCaps: Optical Flow Estimation with Capsule Networks For Action Recognition

论文作者

Jayasundara, Vinoj, Roy, Debaditya, Fernando, Basura

论文摘要

胶囊网络(CAPSNET)最近显示出在大多数计算机视觉任务中表现出色的希望,尤其是与场景理解有关的承诺。在本文中,我们探讨了CAPSNET在光流估计中的功能,该任务在该任务中,卷积神经网络(CNN)已经超过其他方法。我们提出了一个基于CAPSNET的体系结构,称为流程尺寸,该架构试图a)通过较细粒度,特定于运动的和更解释的编码至关重要的匹配,以适应光流估计,b)执行更好的原始光学流程估计,c)降低了地面真相数据,并降低了计算性的良好效率,d)降低了计算性的复杂性,d)降低了计算性的复杂性,分为成就成就成就成就成就的成就, CNN-CounterParts。

Capsule networks (CapsNets) have recently shown promise to excel in most computer vision tasks, especially pertaining to scene understanding. In this paper, we explore CapsNet's capabilities in optical flow estimation, a task at which convolutional neural networks (CNNs) have already outperformed other approaches. We propose a CapsNet-based architecture, termed FlowCaps, which attempts to a) achieve better correspondence matching via finer-grained, motion-specific, and more-interpretable encoding crucial for optical flow estimation, b) perform better-generalizable optical flow estimation, c) utilize lesser ground truth data, and d) significantly reduce the computational complexity in achieving good performance, in comparison to its CNN-counterparts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源