论文标题

确定性矩阵和IID GUE矩阵中多项式中平滑函数的渐近扩展

Asymptotic expansion of smooth functions in polynomials in deterministic matrices and iid GUE matrices

论文作者

Parraud, Felix

论文摘要

令$ x^n $为$ n \ times n $独立gue随机矩阵的家族,$ z^n $一个确定性矩阵的家族,$ p $ a sexchaint nodaverative dynoverative dolynomial,即任何$ n $,$ n $,$ p(x^n)$ is sexAdeAdeAdeAdeAdeAdeAdeAdeAdexoint,$ f $ f $ a smoplece a a specame a a ploock a a plose Function。我们证明,对于任何$ k $,如果$ f $足够光滑,则存在确定性常数$α_i^p(f,z^n)$,以至于$ \ mathbb {e} \ left [\ frac {1} {n} {n} {n} {n} {n} {trext {tr} {tr} \ sum_ {i = 0}^k \ frac {α_i^p(f,z^n)} {n^{2i}} \ +\ +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ banters。特别是,如果$ x $是一个免费的半圆形系统,那么当$ f $的支持和$ p(x,z^n)$的频谱是不连接时,对于所有$ i $,$ i $,$α_i^p(f,z^n)= 0 $。作为推论,我们证明给定$α<1/2 $,对于$ n $足够大,每个特征值$ p(x^n,z^n)$ is $ n^{ - α} $ - 从$ p(x,z^n)$的频谱近距离接近。

Let $X^N$ be a family of $N\times N$ independent GUE random matrices, $Z^N$ a family of deterministic matrices, $P$ a self-adjoint non-commutative polynomial, that is for any $N$, $P(X^N)$ is self-adjoint, $f$ a smooth function. We prove that for any $k$, if $f$ is smooth enough, there exist deterministic constants $α_i^P(f,Z^N)$ such that $$ \mathbb{E}\left[\frac{1}{N}\text{Tr}\left( f(P(X^N,Z^N)) \right)\right]\ =\ \sum_{i=0}^k \frac{α_i^P(f,Z^N)}{N^{2i}}\ +\ \mathcal{O}(N^{-2k-2}) .$$ Besides the constants $α_i^P(f,Z^N)$ are built explicitly with the help of free probability. In particular, if $x$ is a free semicircular system, then when the support of $f$ and the spectrum of $P(x,Z^N)$ are disjoint, for all $i$, $α_i^P(f,Z^N)=0$. As a corollary, we prove that given $α<1/2$, for $N$ large enough, every eigenvalue of $P(X^N,Z^N)$ is $N^{-α}$-close from the spectrum of $P(x,Z^N)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源