论文标题

在Diffie-Hellman映射的索引上

On the Index of Diffie-Hellman Mapping

论文作者

Işık, Leyla, Winterhof, Arne

论文摘要

令$γ$是循环群$ g $ $ n $的生成器。 $ g $的自动映射$ f $的最小索引是最大的亚组$ u $ $ g $的索引,因此,$ f(x)x^{ - r} $在$ u $的每个coset上都是恒定的,对于某些正整数〜$ r $。我们确定单变​​量Diffie-Hellman映射$ d(γ^a)=γ^{a^2} $,$ a = 0,1,\ ldots,n-1 $,并表明小索引的任何映射仅在〜$ d $的小$ g $中与〜$ d $相一致。此外,我们证明了双变量差异 - 赫尔曼映射$ d(γ^a,γ^b)=γ^{ab} $,$ a,b = 0,1,\ ldots,n-1 $的结果相似。在特殊情况下,$ g $是有限字段的乘法组的一个子组,我们提出了改进。

Let $γ$ be a generator of a cyclic group $G$ of order $n$. The least index of a self-mapping $f$ of $G$ is the index of the largest subgroup $U$ of $G$ such that $f(x)x^{-r}$ is constant on each coset of $U$ for some positive integer~$r$. We determine the index of the univariate Diffie-Hellman mapping $d(γ^a)=γ^{a^2}$, $a=0,1,\ldots,n-1$, and show that any mapping of small index coincides with~$d$ only on a small subset of $G$. Moreover, we prove similar results for the bivariate Diffie-Hellman mapping $D(γ^a,γ^b)=γ^{ab}$, $a,b=0,1,\ldots,n-1$. In the special case that $G$ is a subgroup of the multiplicative group of a finite field we present improvements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源