论文标题

关于代码等价问题等级度量的硬度

On the hardness of code equivalence problems in rank metric

论文作者

Couvreur, Alain, Debris-Alazard, Thomas, Gaborit, Philippe

论文摘要

近年来,在编码理论的背景下,等级度量的概念在应用程序,例如时空编码,网络编码或公共密钥密码学方面都知道了许多有趣的发展。这些应用使社区对这种类型的代码的理论属性的兴趣,例如在等级指标中解码的硬度。在与给定度量的代码相关的经典问题中,代码等价的概念(决定两个代码是否是等值的)始终是最大的兴趣,因为它的加密应用程序或与图形同构问题的深度连接有关。 在本文中,我们讨论了$ \ mathbb {f} _ {q^m} $ - 线性和一般级别度量代码的级别标准中代码等价问题的硬度。在$ \ mathbb {f} _ {q^m} $ - 线性案例中,我们将基础问题减少到另一个称为{\ em矩阵代码正确等价问题}的问题。我们证明后一种问题是在$ \ Mathcal {p} $中或$ \ Mathcal {Zpp} $中,具体取决于地面尺寸。这是通过设计一种主常规是线性代数和在有限场上的多项式分解的算法来获得的。事实证明,最困难的实例涉及非琐碎{\ em稳定器代数}的代码。后一种情况的解决将涉及与有限维代数和韦德本理论有关的工具。有趣的是,30年前,理论计算机科学的重要趋势是设计算法,从而为该理论提供了有效的主要结果。这些算法结果在本文中特别有用。 最后,对于一般的矩阵代码,我们证明对等效问题(左右)至少与井的{\ em单一等效性问题}有关hamming指标的代码而言。

In the recent years, the notion of rank metric in the context of coding theory has known many interesting developments in terms of applications such as space time coding, network coding or public key cryptography. These applications raised the interest of the community for theoretical properties of this type of codes, such as the hardness of decoding in rank metric. Among classical problems associated to codes for a given metric, the notion of code equivalence (to decide if two codes are isometric) has always been of the greatest interest, for its cryptographic applications or its deep connexions to the graph isomorphism problem. In this article, we discuss the hardness of the code equivalence problem in rank metric for $\mathbb{F}_{q^m}$-linear and general rank metric codes. In the $\mathbb{F}_{q^m}$-linear case, we reduce the underlying problem to another one called {\em Matrix Codes Right Equivalence Problem}. We prove the latter problem to be either in $\mathcal{P}$ or in $\mathcal{ZPP}$ depending of the ground field size. This is obtained by designing an algorithm whose principal routines are linear algebra and factoring polynomials over finite fields. It turns out that the most difficult instances involve codes with non trivial {\em stabilizer algebras}. The resolution of the latter case will involve tools related to finite dimensional algebras and Wedderburn--Artin theory. It is interesting to note that 30 years ago, an important trend in theoretical computer science consisted to design algorithms making effective major results of this theory. These algorithmic results turn out to be particularly useful in the present article. Finally, for general matrix codes, we prove that the equivalence problem (both left and right) is at least as hard as the well--studied {\em Monomial Equivalence Problem} for codes endowed with the Hamming metric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源