论文标题

学习推断3D形状编辑的语义参数

Learning to Infer Semantic Parameters for 3D Shape Editing

论文作者

Wei, Fangyin, Sizikova, Elena, Sud, Avneesh, Rusinkiewicz, Szymon, Funkhouser, Thomas

论文摘要

3D形状设计和增强中的许多应用都需要对对象的语义参数进行特定编辑(例如,一个人的手臂的姿势或飞机机翼的长度),同时保留尽可能多的现有细节。我们建议学习一个深层网络,该网络渗透输入形状的语义参数,然后允许用户操纵这些参数。该网络经过辅助合成模板和未标记的逼真模型的形状共同训练,从而确保了稳健性来塑造可变性,同时减轻了对逼真的示例的标记。在测试时间,在参数空间驱动器变形中进行编辑要应用于原始形状,该形状可提供语义上的操纵,同时保留细节。这与先前的方法相反,该方法使用具有有限的潜在空间维度,无法保留任意细节的自动编码器,或者使用纯粹的几何控件(例如笼子)驱动变形,从而失去了更新本地部分区域的能力。使用椅子,飞机和人体数据集的实验表明,我们的方法比先前的工作产生的天然编辑更多。

Many applications in 3D shape design and augmentation require the ability to make specific edits to an object's semantic parameters (e.g., the pose of a person's arm or the length of an airplane's wing) while preserving as much existing details as possible. We propose to learn a deep network that infers the semantic parameters of an input shape and then allows the user to manipulate those parameters. The network is trained jointly on shapes from an auxiliary synthetic template and unlabeled realistic models, ensuring robustness to shape variability while relieving the need to label realistic exemplars. At testing time, edits within the parameter space drive deformations to be applied to the original shape, which provides semantically-meaningful manipulation while preserving the details. This is in contrast to prior methods that either use autoencoders with a limited latent-space dimensionality, failing to preserve arbitrary detail, or drive deformations with purely-geometric controls, such as cages, losing the ability to update local part regions. Experiments with datasets of chairs, airplanes, and human bodies demonstrate that our method produces more natural edits than prior work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源