论文标题

DINV,区域和弹跳,$ \ vec {k} $ - Dyck路径

Dinv, Area, and Bounce for $\vec{k}$-Dyck paths

论文作者

Xin, Guoce, Zhang, Yingrui

论文摘要

众所周知的$ Q,T $ -CATALAN序列具有两个组合解释,作为普通Dyck路径的加权总和:一个是Haglund的区域反弹配方,另一个是Haiman的Dinv-DiNv-Area公式。 Zeta图的构造是连接这两个公式的:这是从普通的Dyck路径到自身的两者,并且需要DINV到达区域,并弹跳。 Loehr以$ k $ -DYCK的路径扩展了这样的结果。 Zeta地图由Armstrong-Loehr-Warrington扩展了一类非常一般的路径。 在本文中,我们扩展了$ \ vec {k} $ - Dyck路径的DINV-AREA弹跳结果:i)给出了$ \ vec {k} $ dyck Path的弹跳统计量的几何结构,其中包括$ k $ -dyck $ -Dyck Paths和普通的dyck路径和普通的Dyck路径; ii)给出$ \ vec {k} $ - dyck路径的DINV统计量的几何解释。我们的弹跳结构的灵感来自Loehr的构造和Xin-Zhang的线性算法,用于在$ \ vec {k} $ -Dyck Paths上反转扫描图。我们的DINV解释灵感来自Garsia-Xin的DINV到区域的视觉证明,从而在理性的Dyck路径上产生了启发。

The well-known $q,t$-Catalan sequence has two combinatorial interpretations as weighted sums of ordinary Dyck paths: one is Haglund's area-bounce formula, and the other is Haiman's dinv-area formula. The zeta map was constructed to connect these two formulas: it is a bijection from ordinary Dyck paths to themselves, and it takes dinv to area, and area to bounce. Such a result was extended for $k$-Dyck paths by Loehr. The zeta map was extended by Armstrong-Loehr-Warrington for a very general class of paths. In this paper, We extend the dinv-area-bounce result for $\vec{k}$-Dyck paths by: i) giving a geometric construction for the bounce statistic of a $\vec{k}$-Dyck path, which includes the $k$-Dyck paths and ordinary Dyck paths as special cases; ii) giving a geometric interpretation of the dinv statistic of a $\vec{k}$-Dyck path. Our bounce construction is inspired by Loehr's construction and Xin-Zhang's linear algorithm for inverting the sweep map on $\vec{k}$-Dyck paths. Our dinv interpretation is inspired by Garsia-Xin's visual proof of dinv-to-area result on rational Dyck paths.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源