论文标题

像素精确的无监督检测病毒颗粒在细胞成像数据中的检测

Pixel precise unsupervised detection of viral particle proliferation in cellular imaging data

论文作者

Dresp-Langley, Birgitta, Wandeto, John M.

论文摘要

已经开发出细胞和分子成像技术和模型,以表征细胞局灶性感染体外感染后病毒增殖的单个阶段。在将代表性的实验数据与宿主细胞中病毒传播的数学模型进行进一步比较之前,细胞成像数据的快速自动分类可能会证明有用。在这里,我们使用的是从先前发表的实验获得的细胞成像数据的研究中绘制的计算机生成的图像,该研究代表了宿主细胞单层中的渐进病毒颗粒增殖。受实验性时间成像数据的启发,在这项研究中,时间上的病毒颗粒增加是通过一对一增加,跨图像,代表死者或部分感染细胞的黑色或灰色单像素的,以及通过对原始图像模型中活细胞编码的白色像素的单一增加的假设缓解。图像模拟通过自组织图(SOM)提交给无监督的学习,而SOM输出(SOM-QE)中的量化误差用于自动分类图像模拟,这是病毒颗粒增殖或细胞恢复的代表范围的函数。通过SOM-QE进行的无监督分类160个模型图像,每个图像具有超过300万像素,可提供一个统计上可靠的,像素精确且快速的分类模型,可通过RGB图像平均计算来优于人类计算机辅助的图像分类。此处提出的自动分类程序提供了一种强大的方法,可以理解细胞系在体外或其他细胞中病毒的感染和增殖中的精细调整机制。

Cellular and molecular imaging techniques and models have been developed to characterize single stages of viral proliferation after focal infection of cells in vitro. The fast and automatic classification of cell imaging data may prove helpful prior to any further comparison of representative experimental data to mathematical models of viral propagation in host cells. Here, we use computer generated images drawn from a reproduction of an imaging model from a previously published study of experimentally obtained cell imaging data representing progressive viral particle proliferation in host cell monolayers. Inspired by experimental time-based imaging data, here in this study viral particle increase in time is simulated by a one-by-one increase, across images, in black or gray single pixels representing dead or partially infected cells, and hypothetical remission by a one-by-one increase in white pixels coding for living cells in the original image model. The image simulations are submitted to unsupervised learning by a Self-Organizing Map (SOM) and the Quantization Error in the SOM output (SOM-QE) is used for automatic classification of the image simulations as a function of the represented extent of viral particle proliferation or cell recovery. Unsupervised classification by SOM-QE of 160 model images, each with more than three million pixels, is shown to provide a statistically reliable, pixel precise, and fast classification model that outperforms human computer-assisted image classification by RGB image mean computation. The automatic classification procedure proposed here provides a powerful approach to understand finely tuned mechanisms in the infection and proliferation of virus in cell lines in vitro or other cells.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源